Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels
Abstract
:1. Introduction
2. Formulation and Mathematical Model
2.1. Linear Theory of Nonlocal Elasticity
2.2. Fractional Heat Conduction with Non-Singular Kernels
2.3. Material Properties
3. Problem Formulation
4. Solution of the Transformed Domain
5. Application
6. Inversion of the Laplace Transforms
7. Validation of the Numerical Scheme
8. Numerical Outcomes and Analysis
8.1. Validation of the Proposed Thermal Model
8.2. Impact of Fractional Derivative Parameter
8.3. The Effect of Nonlocal Parameter
8.4. The Effect of the Gradient Index
9. Conclusions
- Thermomechanical responses of the FG nanobeam are shown to be significantly impacted by nonlocal effects, as demonstrated by numerical data.
- Magnitudes are bigger in the novel nonlocal beam model compared to the traditional (local) beam model. Therefore, the small-scale effects (also called nonlocal effects) must be considered when figuring out how nanostructures behave mechanically.
- The success of nonlocal beam models depends heavily on carefully selecting the nonlocal parameter’s value.
- The FG nanobeam’s responses can be adjusted by selecting appropriate values for the gradient indicator, which significantly impacts the responses.
- There were significant discrepancies between the variances of the thermoelastic models and the fractional thermoelastic models. Changes in the rate of change of the temperature variation depend strongly on the value of the fractional parameter of the Atangana–Baleanu fractional derivative operator. Therefore, the fractional parameter is becoming more effective as a measure of heat conduction.
- With fractional derivatives, the values of the fields under study are less than those predicted by standard thermoelastic models. Therefore, the fractional parameter should be chosen to reduce the medium’s effect on the elastic wave.
- Composite materials with FGM characteristics are superior to traditional homogenous materials in various contexts. The biomedical and defense industries also extensively use FGMs, most notably as medical implants and bulletproof vests. The automotive sector, the steel sector, the energy sector, etc., are just a few more areas where FGM has been found useful.
- With this new perspective on investigating thermal deformations in solid mechanics, we can understand the Atangana–Baleanu fractional derivative operator in heat and mass transfer systems. Application of the method and concepts given herein to other thermoelasticity and thermodynamic problems is possible.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faghidian, S.A.; Żur, K.K.; Reddy, J.N.; Ferreira, A.J.M. On the wave dispersion in functionally graded porous Timoshenko-Ehrenfest nanobeams based on the higher-order nonlocal gradient elasticity. Compos. Struct. 2022, 279, 114819. [Google Scholar] [CrossRef]
- Pham, Q.-H.; Tran, V.K.; Tran, T.T.; Nguyen, P.-C.; Malekzadeh, P. Dynamic instability of magnetically embedded functionally graded porous nanobeams using the strain gradient theory. Alex. Engin. J. 2022, 61, 10025–10044. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, Ö. Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 2014, 85, 90–104. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Farokhi, H.; Amabili, M. Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 2013, 71, 137–155. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Emamian, A.; Karimnejad, S.; Sajjadi, H. A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder. Int. Communic. Heat Mass Trans. 2019, 108, 104280. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Jing, D. Two-dimensional analytical solution for temperature distribution in FG hollow spheres: General thermal boundary conditions. Int. Communic. Heat Mass Trans. 2020, 113, 104531. [Google Scholar] [CrossRef]
- Avey, M.; Fantuzzi, N.; Sofiyev, A. Mathematical modeling and analytical solution of thermoelastic stability problem of functionally graded nanocomposite cylinders within different theories. Mathematics 2022, 10, 1081. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, K.; Ghita, G.M.D.; Craciun, E.-M. Modeling of a magneto-electro-piezo-thermoelastic nanobeam with two temperature subjected to ramp type heating. Proc. Rom. Acad. Ser. A 2022, 23, 141–149. [Google Scholar]
- Pinnola, F.P.; Barretta, R.; Marotti de Sciarra, F.; Pirrotta, A. Analytical solutions of viscoelastic nonlocal Timoshenko beams. Mathematics 2022, 10, 477. [Google Scholar] [CrossRef]
- Wang, S.; Kang, W.; Yang, W.; Zhang, Z.; Li, Q.; Liu, M.; Wang, X. Hygrothermal effects on buckling behaviors of porous bi-directional functionally graded micro-/nanobeams using two-phase local/nonlocal strain gradient theory. Eur. J. Mech.-A/Solids 2022, 94, 104554. [Google Scholar] [CrossRef]
- Civalek, Ö.; Uzun, B.; Yayl, M.Ö.; Akgöz, B. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 2020, 135, 381. [Google Scholar] [CrossRef]
- Dangi, C.; Lal, R.; Sukavanam, N. Effect of surface stresses on the dynamic behavior of bi-directional functionally graded nonlocal strain gradient nanobeams via generalized differential quadrature rule. Eur. J. Mech.-A/Solids 2021, 90, 104376. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D.G.B. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Eringen, A.C. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 1972, 10, 425–435. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Eshel, N.N. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 1968, 4, 109–124. [Google Scholar] [CrossRef]
- Askes, H.; Aifantis, E.C. Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 2011, 48, 1962–1990. [Google Scholar] [CrossRef]
- Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tonga, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477–1508. [Google Scholar] [CrossRef]
- Grekova, E.F.; Porubov, A.V.; dell’Isola, F. Reduced linear constrained elastic and viscoelastic homogeneous Cosserat media as acoustic metamaterials. Symmetry 2020, 12, 521. [Google Scholar] [CrossRef] [Green Version]
- Toupin, R.A. Elastic materials with couple-stresses. Arch. Ration Mech. Anal. 1962, 11, 385–414. [Google Scholar] [CrossRef] [Green Version]
- Toupin, R.A. Theories of elasticity with couple-stress. Arch. Ration Mech. Anal. 1964, 17, 85–112. [Google Scholar] [CrossRef]
- Atangana, A.; Secer, A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abst. Appl. Analy. 2013, 2013, 279681. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivative with nonlocal and nonsingular kernel. Therm. Sci. 2016, 20, 757. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Saad, K.M. New fractional derivative with non-singular kernel for deriving Legendre spectral collocation method, Alex. Eng. J. 2020, 59, 1909–1917. [Google Scholar]
- Dokuyucu, M.A.; Dutta, H.; Yildirim, C. Application of nonlocal and non-singular kernel to an epidemiological model with fractional order. Math. Methods Appl. Sci. 2021, 44, 3468–3484. [Google Scholar] [CrossRef]
- Sabatier, J. Non-Singular kernels for modelling power law type long memory behaviours and beyond. Cybern. Sys. 2020, 51, 383–401. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Agarwal, R.P.; Shah, R.; Botmart, T. Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators. Mathematics 2021, 9, 2326. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Multiparameter fractional differentiation with non singular kernel. Probl. Anal.-Iss. Analy. 2021, 10, 15–30. [Google Scholar] [CrossRef]
- Heydari, M.H.; Hosseininia, M. A new variable-order fractional derivative with non-singular Mittag–Leffler kernel: Application to variable-order fractional version of the 2D Richard equation. Engin. Comput. 2022, 38, 1759. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakraverty, S. Singular and Nonsingular Kernels Aspect of Time-Fractional Coupled Spring-Mass System. ASME J. Comput. Nonlinear Dynam. 2022, 17, 021001. [Google Scholar] [CrossRef]
- Atangana, A.; Akgül, A.; Owolabi, K.M. Analysis of fractal fractional differential equations. Alex. Eng. J. 2020, 59, 1117–1134. [Google Scholar] [CrossRef]
- Atangana, A.; Qureshi, S. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 2019, 123, 320–337. [Google Scholar] [CrossRef]
- Saad, K.M.; Gómez-Aguilar, J.F. Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel. Phys. A Stat. Mech. Its Appl. 2018, 509, 703–716. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D. Classes of operators in fractional calculus: A case study. Math. Methods Appl. Sci. 2021, 44, 9143–9162. [Google Scholar] [CrossRef]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. Thermoelasticity without energy dissipation. J. Elast. 1993, 31, 189–208. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. On undamped heat waves in an elastic solid. J. Therm. Stress. 1992, 15, 253–264. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A. 1991, 432, 171–194. [Google Scholar]
- Quintanilla, R. Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 2019, 24, 4020–4031. [Google Scholar] [CrossRef]
- Quintanilla, R. Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Moaaz, O.; Abouelregal, A.E.; Alsharari, F. Analysis of a transversely isotropic annular circular cylinder immersed in a magnetic field using the Moore–Gibson–Thompson thermoelastic model and generalized Ohm’s law. Mathematics 2022, 10, 3816. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Dassios, I.; Moaaz, O. Moore–Gibson–Thompson Thermoelastic Model Effect of Laser-Induced Microstructures of a Microbeam Sitting on Visco-Pasternak Foundations. Appl. Sci. 2022, 12, 9206. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Mohammed, F.A.; Benhamed, M.; Zakria, A.; Ahmed, I.-E. Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative. Math. Comp. Simul. 2022, 199, 81–99. [Google Scholar] [CrossRef]
- Moaaz, O.; Abouelregal, A.E.; Alesemi, M. Moore–Gibson–Thompson Photothermal Model with a Proportional Caputo Fractional Derivative for a Rotating Magneto-Thermoelastic Semiconducting Material. Mathematics 2022, 10, 3087. [Google Scholar] [CrossRef]
- Abouelregal, A.E. Generalized thermoelastic MGT model for a functionally graded heterogeneous unbounded medium containing a spherical hole. Eur. Phys. J. Plus 2022, 137, 953. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Mohammad-Sedighi, H.; Shirazi, A.H.; Malikan, M.; Eremeyev, V.A. Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on nonlocal Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. 2022, 34, 1067–1085. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Moustapha, M.V.; Nofal, T.A.; Rashid, S.; Ahmad, H. Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Results Phys. 2021, 20, 103705. [Google Scholar] [CrossRef]
- Eringen, A.C.; Wegner, J. Nonlocal Continuum Field Theories. ASME Appl. Mech. Rev. March. 2003, 56, B20–B22. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An introduction to the Fractional Integrals and Derivatives, Theory and Applications; John Wiley and Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Atangana, A.; Baleanu, D. Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 2017, 143, D4016005. [Google Scholar] [CrossRef]
- Zhang, N.; Khan, T.; Guo, H.; Shi, S.; Zhong, W.; Zhang, W. Functionally graded materials: An overview of stability, buckling, and free vibration analysis. Advan. Mater. Sci. Eng. 2019, 2019, 1354150. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Talha, M. Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aero. Sci. 2015, 79, 1–14. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Mohammed, W.W.; Mohammad-Sedighi, H. Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags. Arch. Appl. Mech. 2021, 91, 2127–2142. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Ahmad, H.; Yao, S.-W. Functionally graded piezoelectric medium exposed to a movable heat flow based on a heat equation with a memory-dependent derivative. Materials 2020, 13, 3953. [Google Scholar] [CrossRef] [PubMed]
- Oden, J.T.; Ripperger, E.A. Mechanics of Elastic Structures; Hemisphere/McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Peng, W.; Chen, L.; He, T. Nonlocal thermoelastic analysis of a functionally graded material microbeam. Appl. Math. Mech.-Engl. Ed. 2021, 42, 855. [Google Scholar] [CrossRef]
- Honig, G.; Hirdes, U. A method for the numerical inversion of the Laplace transform. J. Comp. Appl. Math. 1984, 10, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Abbas, I.; Hobiny, A.; Alshehri, H.; Vlase, S.; Marin, M. Analysis of Thermoelastic Interaction in a Polymeric Orthotropic Medium Using the Finite Element Method. Polymers 2022, 14, 2112. [Google Scholar] [CrossRef]
- Abbas, I.; Marin, M.; Hobiny, A.; Vlase, S. Thermal Conductivity Study of an Orthotropic Medium Containing a Cylindrical Cavity. Symmetry 2022, 14, 2387. [Google Scholar] [CrossRef]
- Hobiny, A.; Abbas, I. Generalized Thermo-Diffusion Interaction in an Elastic Medium under Temperature Dependent Diffusivity and Thermal Conductivity. Mathematics 2022, 10, 2773. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 2020, 12, 1276. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, K. Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives. SN Appl. Sci. 2022, 4, 329. [Google Scholar] [CrossRef]
- Sene, N. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. J. Frac. Calc. Nonlinear Sys. 2021, 2, 60–75. [Google Scholar] [CrossRef]
- Mittal, G.; Kulkarni, V.S. Two temperature fractional order thermoelasticity theory in a spherical domain. J. Therm. Stress. 2019, 42, 1136–1152. [Google Scholar] [CrossRef]
- Abouelregal, A.E. Mathematical modeling of functionally graded nanobeams via fractional heat Conduction model with non-singular kernels. Arch. Appl. Mech. 2022. [Google Scholar] [CrossRef]
Temperature | Deflection | |||
---|---|---|---|---|
Honig and Hirdes | Finite Element | Honig and Hirdes | Finite Element | |
0 | 0.0350153 | 0.0346686 | 0 | 0 |
0.1 | 0.0060144 | 0.00595485 | 0.0603709 | 0.0597732 |
0.2 | 0.00376662 | 0.00372933 | 0.0315896 | 0.0312768 |
0.3 | 0.00185514 | 0.00183677 | −0.00144551 | −0.0014312 |
0.4 | 0.000452097 | 0.000447621 | −0.00675736 | −0.00669046 |
0.5 | 0.000568924 | 0.000563291 | −0.00139024 | −0.00137648 |
0.6 | 0.0000632165 | 0.0000625906 | 0.00116959 | 0.00115801 |
0.7 | 0.000109421 | 0.000108337 | 0.000647093 | 0.000640686 |
0.8 | 0.0000444636 | 0.0000440233 | −0.0000806691 | −0.0000798704 |
0.9 | 0.0000122177 | 0.0000120968 | −0.000167537 | −0.000165878 |
1 | 0.0000133683 | 0.000013236 | 0 | 0 |
Temperature | Deflection | |||||
---|---|---|---|---|---|---|
Present | Ref. [56] | Ref. [66] | Present | Ref. [56] | Ref. [66] | |
0 | 0.033902 | 0.052003 | 0.0624035 | 0 | 0 | 0 |
0.1 | 0.006218 | 0.00893227 | 0.0107187 | 0.057221 | 0.0717278 | 0.0896598 |
0.2 | 0.003576 | 0.0055940 | 0.00671279 | 0.031654 | 0.0375322 | 0.0469152 |
0.3 | 0.001987 | 0.00275515 | 0.00330618 | −0.00028 | −0.00171744 | −0.0021468 |
0.4 | 0.000346 | 0.000671431 | 0.000805718 | −0.00665 | −0.00802855 | −0.0100357 |
0.5 | 0.000593 | 0.000844937 | 0.00101392 | −0.00180 | −0.00165178 | −0.00206472 |
0.6 | 0.000109 | 0.000093886 | 0.000112663 | 0.001030 | 0.00138961 | 0.00173702 |
0.7 | 0.000103 | 0.000162506 | 0.000195007 | 0.000742 | 0.00076882 | 0.00096103 |
0.8 | 0.00005645 | 0.00006604 | 0.000079242 | −0.000009 | −0.00009584 | −0.0001198 |
0.9 | 0.00000662 | 0.000018145 | 0.00002177 | −0.00017 | −0.0001991 | −0.0002488 |
1 | 0.00000151 | 0.000019854 | 0.00002382 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atta, D.; Abouelregal, A.E.; Alsharari, F. Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels. Mathematics 2022, 10, 4718. https://doi.org/10.3390/math10244718
Atta D, Abouelregal AE, Alsharari F. Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels. Mathematics. 2022; 10(24):4718. https://doi.org/10.3390/math10244718
Chicago/Turabian StyleAtta, Doaa, Ahmed E. Abouelregal, and Fahad Alsharari. 2022. "Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels" Mathematics 10, no. 24: 4718. https://doi.org/10.3390/math10244718
APA StyleAtta, D., Abouelregal, A. E., & Alsharari, F. (2022). Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels. Mathematics, 10(24), 4718. https://doi.org/10.3390/math10244718