Inverse Sum Indeg Index (Energy) with Applications to Anticancer Drugs
Abstract
:1. Introduction
2. Inverse Sum Indeg Energy of Graphs
- (i)
- (ii)
- (iii)
- Let G be a bipartite graph with positive -eigenvalues. Then,
- Ex.1
- For , the -spectrum of G is and . Theorem 1 gives , Theorem 2 gives , which is imaginary, while Theorem 3 gives and Theorem 4 gives
- Ex.2
- For , the -spectrum of G is and . Theorem 1 givesTheorem 2 gives , Theorem 3 gives and Theorem 4 gives
- Ex.3
- For , the -spectrum of G is and . Theorem 1 gives , Theorem 2 gives , while Theorem 3 gives and Theorem 4 gives
- Ex.4
- For , the -spectrum of G is and . Theorem 1 gives , Theorem 2 gives , with , Theorem 3 gives and Theorem 4 gives
- Ex.5
- The graph obtained from and the path by adding an edge between any vertex of and one end vertex of is denoted by . It is known as a path complete graph or kite graph. The pineapple graph is a graph obtained from by attaching pendent vertices at any vertex of For , the -spectrum of G is
- Case 1. Clearly, and satisfies (6), but this cannot happen, since the trace of is zero.
- Case 2. The second option is that the -spectrum satisfies (6). By Lemma 2, is the -spectrum of the complete bipartite graph.
- Case 3. If the -spectrum of G is , then (6) implies that
3. Regressions Models and Applications to Anticancer Drugs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Havare, O.C. The inverse sum indeg index (ISI) and ISI-energy of Hyaluronic Acid-Paclitaxel molecules used in antiancer drugs. Open J. Discret. Appl. Math. 2021, 4, 72–81. [Google Scholar] [CrossRef]
- Hernández, J.C.; Rodríguez, J.M.; Sigarreta, J.M. The geometric-arithmetic index by decompositions-CMMSE. J. Math. Chem. 2017, 55, 1376–1391. [Google Scholar] [CrossRef]
- Hosamani, S.M.; Kulkarni, B.B.; Boli, R.G.; Gadag, V.M. QSPR analysis of certain graph theoretical matrices and their corresponding energy. Appl. Math. Nonlinear Sci. 2017, 2, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Kirmani, S.A.K.; Ali, P.; Azam, F.; Alvi, P.A. On Ve-Degree and Ev-Degree Topological Properties of Hyaluronic Acid? Anticancer Drug Conjugates with QSPR. J. Chem. 2021, 2021, 3860856. [Google Scholar] [CrossRef]
- Shanmukha, M.C.; Basavarajappa, N.S.; Shilpa, K.C.; Usha, A. Degree-based topological indices on anticancer drugs with QSPR analysis. Heliyon 2020, 6, e04235. [Google Scholar] [CrossRef] [PubMed]
- Rather, B.A.; Aouchiche, M.; Imran, M.; Pirzada, S. On arithmetic–geometric eigenvalues of graphs. Main Group Met. Chem. 2022, 45, 111–123. [Google Scholar] [CrossRef]
- Cvetković, D.M.; Rowlison, P.; Simić, S. An Introduction to Theory of Graph Spectra; London Mathematical Society Student Texts, 75; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: New York, NY, USA, 2010. [Google Scholar]
- Gutman, I. The Energy of a graph. Ber. Math. Statist. Sekt. Forsch-Ungszentram Graz. 1978, 103, 1–22. [Google Scholar]
- Gutman, I. Topology and stability of conjugated hudrocarbons. The dependence of total π-electron energy on molecular topology. J. Serb. Chem. Soc. 2005, 70, 441–456. [Google Scholar] [CrossRef]
- Nikiforov, V. Beyond graph energy: Norms of graphs and matrices. Linear Algebra Appl. 2016, 506, 82–138. [Google Scholar] [CrossRef] [Green Version]
- Rather, B.A.; Imran, M. A note on the energy and Sombor energy of graphs. MATCH Commun. Math. Comput. Chem. 2023, 89, 467–477. [Google Scholar] [CrossRef]
- Filipovski, S.; Jajcay, R. Bounds for the energy of graphs. Mathematics 2021, 9, 1687. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2012. [Google Scholar]
- Vukiećevixcx, D. Bond additive modeling 2. Mathematical properties of max-min rodeg index. Croat. Chem. Acta 2010, 83, 261–273. [Google Scholar]
- Nezhad, F.F.; Azari, M.; Došlić, T. Sharp bounds on the inverse sum indeg index. Discret. Appl. Math. 2017, 217, 185–195. [Google Scholar] [CrossRef]
- Zangi, S.; Ghorbani, M.; Eslampour, M. On the eigenvalues of some matrices based on vertex degree. Iran. J. Math. Chem. 2018, 9, 149–156. [Google Scholar]
- Hafeez, S.; Farooq, R. Inverse sum indeg energy of graphs. IEEE Acess 2019, 7, 100860–100866. [Google Scholar] [CrossRef]
- Bharali, A.; Mahanta, A.; Gogoi, I.J.; Doley, A. Inverse sum indeg index and ISI-matrix of graphs. J. Discret. Math. Sci. Cryptogr. 2020, 23, 1315–1333. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Broersma, H. Spectral properties of inverse sum indeg index of graphs. J. Math. Chem. 2020, 58, 2108–2139. [Google Scholar] [CrossRef]
- Li, F.; Ye, Q.; Broersma, H. Some new bounds for the inverse sum indeg energy of graphs. Axioms 2022, 11, 243. [Google Scholar] [CrossRef]
- Zou, X.; Rather, B.A.; Imran, M.; Ali, A. On Some Topological Indices Defined via the Modified Sombor Matrix. Molecules 2022, 27, 6772. [Google Scholar] [CrossRef]
- Jamaal, F.; Imran, M.; Rather, B.A. On inverse sum indeg energy of graphs. Spec. Matrices 2022, 10, 1–10. [Google Scholar] [CrossRef]
Drugs | BP | MP | E | MR | ||
---|---|---|---|---|---|---|
Amathaspiramide E | 572.7 | 209.72 | 90.3 | 89.4 | 28.5119 | 31.6741 |
Aminopterin | 782.27 | 344.45 | 114 | 37.85 | 43.6952 | |
Aspidostomide E | 798.8 | 116.2 | 116 | 34.9667 | 38.8268 | |
Carmustine | 309.6 | 120.99 | 63.8 | 46.6 | 10.85 | 13.4524 |
Caulibugulone E | 373 | 129.46 | 62 | 52.2 | 17.1667 | 20.0501 |
Convolutamide A | 629.9 | 97.9 | 130.1 | 35.1786 | 40.7735 | |
Convolutamine F | 387.7 | 128.67 | 63.7 | 73.8 | 16.3833 | 18.7833 |
Convolutamydine A | 504.9 | 199.2 | 81.6 | 68.2 | 20.7119 | 22.2929 |
Daunorubicin | 770 | 208.5 | 117.6 | 130 | 50.2976 | 55.4943 |
Deguelin | 560.1 | 213.39 | 84.3 | 105.1 | 39.65 | 44.5048 |
Melatonin | 512.8 | 182.51 | 78.4 | 67.6 | 19.9667 | 23.3733 |
Minocycline | 803.3 | 326.3 | 122.5 | 116 | 43.3929 | 46.805 |
Perfragilin A | 431.5 | 187.62 | 68.7 | 63.6 | 20.9167 | 23.4653 |
Podophyllotoxin | 597.9 | 235.86 | 93.6 | 104.3 | 41 | 46.3479 |
Pterocellin B | 521.6 | 199.88 | 79.5 | 87.4 | 31.8667 | 36.6356 |
Raloxifene | 728.2 | 289.58 | 110.1 | 136.6 | 43.85 | 51.0142 |
Tambjamine K | 391.7 | 64.1 | 76.6 | 21.9667 | 25.7574 |
Invariant | BP | MP | E | MR |
---|---|---|---|---|
0.875742866 | 0.751128121 | 0.870072771 | 0.927336169 | |
0.865394398 | 0.752558075 | 0.853707593 | 0.935499557 |
Linear regression | ||||
Invariant | BP | MP | E | MR |
0.7669 | 0.7489 | 0.757 | 0.86 | |
0.7489 | 0.5663 | 0.7288 | 0.8752 | |
Logarithmic regression | ||||
Invariant | BP | MP | E | MR |
0.7672 | 0.6064 | 0.7141 | 0.8484 | |
0.7553 | 0.6066 | 0.6994 | 0.8642 | |
Quadratic regression | ||||
Invariant | BP | MP | E | MR |
0.777 | 0.6497 | 0.7576 | 0.867 | |
0.7599 | 0.6454 | 0.7289 | 0.8789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altassan, A.; Rather, B.A.; Imran, M. Inverse Sum Indeg Index (Energy) with Applications to Anticancer Drugs. Mathematics 2022, 10, 4749. https://doi.org/10.3390/math10244749
Altassan A, Rather BA, Imran M. Inverse Sum Indeg Index (Energy) with Applications to Anticancer Drugs. Mathematics. 2022; 10(24):4749. https://doi.org/10.3390/math10244749
Chicago/Turabian StyleAltassan, Alaa, Bilal Ahmad Rather, and Muhammad Imran. 2022. "Inverse Sum Indeg Index (Energy) with Applications to Anticancer Drugs" Mathematics 10, no. 24: 4749. https://doi.org/10.3390/math10244749
APA StyleAltassan, A., Rather, B. A., & Imran, M. (2022). Inverse Sum Indeg Index (Energy) with Applications to Anticancer Drugs. Mathematics, 10(24), 4749. https://doi.org/10.3390/math10244749