Metaheuristics in Business Model Development for Local Tourism Sustainability Enhancement
Abstract
:1. Introduction
2. Literature Review
3. Problem Description and Mathematical Model
- At time zero, all tourist groups and locations are available.
- Each location can only accommodate one tourist group at a time.
- Each activity has only one location constraint.
- Each tourist group visits only one location at a time.
- The tourists’ sightseeing time correlates.
- Activities and locations are assigned ahead of time, and no preemption of activities is permitted.
- Activities and locations are announced in advance, and there is a strict prohibition on any form of activity preemption; attendees are not permitted to disrupt ongoing activities until they have been completed.
Mathematical Model
Indices and sets: | ||
i,p | Tourist group index; | |
N | Set of tourist groups; | |
j,l | Activity index; | |
Oi | Set of activities for tourist group i; | |
k,h | Business index; | |
K | Set of businesses. | |
Parameters: | ||
Sightseeing time of business k for activity Oij (unit: hour); | ||
Travel time between the business h to the business k (unit: hour); | ||
Positive large number; | ||
Tourist group i activity j performs at the business k; | ||
Maximum capacity of the business k (unit: person); | ||
Number of tourists in group i (unit: person); | ||
Starting time of tourist group i (unit: hour); | ||
Finishing time of tourist group i (unit: hour); | ||
Earliest service time of business k for activities Oij (unit: hour); | ||
Latest service time of business k for at activities Oij (unit: hour); | ||
The revenue (collection fee per visit) of business k for activities Oij (unit: THB/person); | ||
The cost (staff cost, service cost and administration cost) of business k for activities Oij (unit: THB/person). | ||
Decision variables: | ||
Starting time of tourist group i activity j at the business k (unit: hour); | ||
Completion time of tourist group i activity j at the business k (unit: hour); | ||
= 1, if tourist group i activity j is assigned at the business k; = 0, otherwise; | ||
= 1, if tourist group i activity j precedes activity l at the business k; = 0, otherwise; | ||
= 1, if tourist group i activity j is processed at business k and activity j-1 at the business h; = 0, otherwise. | ||
Objective function: | ||
(1) | ||
The objective function is used to maximize businesses’ profits with tourist satisfaction. | ||
Subject to: | ||
(2) | ||
Equation (2) ensures that the activity is assigned to at least one business. | ||
(3) | ||
(4) | ||
Equations (3) and (4) ensure that the amount of time between the starting and finishing times must at least equal the amount of time spent sightseeing at business k. | ||
(5) | ||
(6) | ||
(7) | ||
Equations (5)–(7) ensure that tourist i and activity j and tourist p and activity l cannot be carried out simultaneously at any business. | ||
(8) | ||
(9) | ||
Equations (8) and (9) guarantee the feasibility of the businesses that are demonstrated for any activity. | ||
(10) | ||
(11) | ||
Equations (10) and (11) are sequencing constraints that take travel time into account. | ||
(12) | ||
(13) | ||
Equations (12) and (13) guarantee that no action can include more than one of the businesses. | ||
(14) | ||
(15) | ||
Equations (14) and (15) ensure that each activity’s business is chosen from the available alternatives. | ||
(16) | ||
Equation (16) ensures that the number of tourists is fewer than the limit of business k. | ||
(17) | ||
(18) | ||
(19) | ||
(20) | ||
Equations (17)–(20) ensure that the completion and starting times fall within the time windows of the business’s and the tourist group’s goals. | ||
(21) | ||
(22) | ||
Equation (21) is a continuous decision variable constraint, while Equation (22) is a binary decision variable constraint. |
4. Development of Metaheuristics
4.1. The Traditional Differential Evolution (DE) and Traditional Genetic Algorithm (GA)
4.1.1. The Traditional DE
4.1.2. The Traditional GA
4.2. Hybrid Differential Evolution Algorithm with Variable Neighborhood Search Algorithm (HDEVNS)
Algorithm 1. Variable Neighborhood Search algorithm (VNS) | |
1 | Initialize solution s |
2 | For k = 1 to kmax |
3 | Shaking: generate at random a starting solution s’ ∈ Nk(x) |
4 | Local search: apply a local search from the starting solution x′ using the base random neighborhood structure s″ |
(optional) insert algorithm | |
(optional) swap algorithm | |
5 | Improve or not: |
6 | If s″ is better than s |
7 | s = s″ |
8 | End If |
9 | Neighborhood change: k = k + 1 |
10 | End for |
11 | Output: s |
Algorithm 2. Hybrid Differential Evolution algorithm with Variable Neighborhood Search algorithm (HDEVNS) | |
1 | Input: MMSSPTWdata, DE parameters (NP, CR, F) |
2 | Output: the best solution |
3 | Begin Generate the initial population of NP |
4 | while termination condition is not satisfied do |
5 | for i = 1 to NP //NP is the predefined number of population |
6 | Perform mutation process using Equation (23) |
7 | Perform recombination process using Equation (24) |
8 | Perform VNS algorithm |
9 | Evaluate objective value of vectors |
10 | Perform selection process using Equation (25) |
11 | Update best solution |
12 | end for |
13 | end while |
14 | end |
4.2.1. Initial Solution
4.2.2. Mutation Process
4.2.3. Recombination Process
4.2.4. Selection Process
4.3. Hybrid Genetic Algorithm with K-Variable Moves Algorithm (HGAKV)
Algorithm 3. Hybrid Genetic Algorithm with K-Variable moves algorithm (HGAKV) | |
1 | Input: MMSSPTWdata, GA parameters (popSize, maxGen, pm, pc) |
2 | Output: the best solution |
3 | Begin t ← 0 |
Generate the initial populations | |
Evaluate objective value of populations | |
4 | while t ≤ maxGen |
5 | Generate F(t) from P(t) by weight mapping crossover (WMX) |
6 | Generate F(t) from P(t) by swap mutation operation or KV algorithm |
7 | Evaluate objective value of F(t) |
8 | Select P(t+1) from P(t) and F(t) by elitist selection operation |
9 | t ← t + 1 |
10 | end while |
11 | end |
4.3.1. Initial Solution
- Step 1:
- Construct a random initial solution based on the activity number in the chromosome, which is composed of the group numbers.
- Step 2:
- Consider the following tourist and location constraints:
- Examine the time window restrictions of existing tourists and locations.
- Evaluate the present capacity restrictions of the location.
- Update the sequence of group I in the set number population.
- Repeat until the sequence is completed.
- Step 3:
- Check the cumulative tourists in the location. If the operation locations are not in service, the defined sequence must be repaired, and then step 2 must be returned to.
- Step 4:
- Update capacity in locations.
- Step 5:
- Update the time window of tourists.
- Step 6:
- Evaluate fitness using the objective function.
- Step 7:
- Select the best solution.
4.3.2. Crossover Operator
4.3.3. Mutation Operator
4.3.4. Selection Operator
4.4. Current Practice (CP)
5. Case Study
6. Computational Results
- SolutionMILP = the solution of the mixed integer linear programming;
- Solutionold = the solution of the current practice;
- Solutionalg = the solution of the current practice, DE, HDEVNS, GA, and HGAKV.
Sensitivity Analyses
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, K.; Wu, D.; Zou, Y. Tourist Arrival Forecasting Using Multiscale Mode Learning Model. Mathematics 2022, 10, 2999. [Google Scholar] [CrossRef]
- Department of Tourism the Tourism Development Strategic Plan 2018–2021. Available online: https://checkinthailand.net/wp-content/uploads/2021/02/Plan-department-of-tourism_compressed-1.pdf (accessed on 10 July 2022).
- Díaz, M.R.; Espino-Rodríguez, T.F. Determining the Sustainability Factors and Performance of a Tourism Destination from the Stakeholders’ Perspective. Sustainability 2016, 8, 951. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Song, H.; Huang, G.Q. Tourism Supply Chain Management: A New Research Agenda. Tour. Manag. 2009, 30, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Thumrongvut, P.; Sethanan, K.; Pitakaso, R.; Jamrus, T.; Golinska-Dawson, P. Application of Industry 3.5 Approach for Planning of More Sustainable Supply Chain Operations for Tourism Service Providers. Int. J. Logist. Res. Appl. 2022. [Google Scholar] [CrossRef]
- Ahmadimanesh, F.; Paydar, M.M.; Asadi-Gangraj, E. Designing a Mathematical Model for Dental Tourism Supply Chain. Tour. Manag. 2019, 75, 404–417. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Fang, Y. Logistics Service Scheduling with Manufacturing Provider Selection in Cloud Manufacturing. Robot Comput. Integr. Manuf. 2020, 65, 101914. [Google Scholar] [CrossRef]
- Fernández, E.; Kalcsics, J.; Núñez-del-Toro, C. A Branch-and-Price Algorithm for the Aperiodic Multi-Period Service Scheduling Problem. Eur. J. Oper. Res. 2017, 263, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Shen, S.; Wang, H. Integrated Vehicle Routing and Service Scheduling Under Time and Cancellation Uncertainties with Application in Nonemergency Medical Transportation. Serv. Sci. 2021, 13, 172–191. [Google Scholar] [CrossRef]
- Frey, H.C.; Patil, S.R. Identification and Review of Sensitivity Analysis Methods. Risk Anal. 2002, 22, 553–578. [Google Scholar] [CrossRef]
- Dhami, I.; Deng, J.; Strager, M.; Conley, J. Suitability-Sensitivity Analysis of Nature-Based Tourism Using Geographic Information Systems and Analytic Hierarchy Process. J. Ecotourism 2017, 16, 41–68. [Google Scholar] [CrossRef]
- Özgen, A.; Tuzkaya, G.; Tuzkaya, U.R.; Özgen, D. A Multi-Criteria Decision Making Approach for Machine Tool Selection Problem in a Fuzzy Environment. Int. J. Comput. Intell. Syst. 2011, 4, 431–445. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Zheng, L.; Luo, S. Adaptive Differential Evolution Algorithm Based on Fitness Landscape Characteristic. Mathematics 2022, 10, 1511. [Google Scholar] [CrossRef]
- Punyakum, V.; Sethanan, K.; Nitisiri, K.; Pitakaso, R.; Gen, M. Hybrid Differential Evolution and Particle Swarm Optimization for Multi-Visit and Multi-Period Workforce Scheduling and Routing Problems. Comput. Electron. Agric. 2022, 197, 106929. [Google Scholar] [CrossRef]
- Sethanan, K.; Jamrus, T. Hybrid Differential Evolution Algorithm and Genetic Operator for Multi-Trip Vehicle Routing Problem with Backhauls and Heterogeneous Fleet in the Beverage Logistics Industry. Comput. Ind. Eng. 2020, 146, 106571. [Google Scholar] [CrossRef]
- Vakhnin, A.; Sopov, E.; Semenkin, E. On Improving Adaptive Problem Decomposition Using Differential Evolution for Large-Scale Optimization Problems. Mathematics 2022, 10, 4297. [Google Scholar] [CrossRef]
- Kusoncum, C.; Sethanan, K.; Pitakaso, R.; Hartl, R.F. Heuristics with Novel Approaches for Cyclical Multiple Parallel Machine Scheduling in Sugarcane Unloading Systems. Int. J. Prod. Res. 2021, 59, 2479–2497. [Google Scholar] [CrossRef]
- Pitakaso, R.; Sethanan, K.; Srijaroon, N. Modified Differential Evolution Algorithms for Multi-Vehicle Allocation and Route Optimization for Employee Transportation. Eng. Optim. 2020, 52, 1225–1243. [Google Scholar] [CrossRef]
- Supattananon, N.; Akararungruangkul, R. Modified Differential Evolution Algorithm for a Transportation Software Application. J. Open Innov. Technol. Mark. Complex. 2019, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Fleszar, K.; Osman, I.H.; Hindi, K.S. A Variable Neighbourhood Search Algorithm for the Open Vehicle Routing Problem. Eur. J. Oper. Res. 2009, 195, 803–809. [Google Scholar] [CrossRef]
- Cho, D.H.; Moon, S.H.; Kim, Y.H. Genetic Feature Selection Applied to Kospi and Cryptocurrency Price Prediction. Mathematics 2021, 9, 2574. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Jamrus, T.; Chien, C.F. Extended Priority-Based Hybrid Genetic Algorithm for the Less-than-Container Loading Problem. Comput. Ind. Eng. 2016, 96, 227–236. [Google Scholar] [CrossRef]
- Kamsopa, K.; Sethanan, K.; Jamrus, T.; Czwajda, L. Hybrid Genetic Algorithm for Multi-Period Vehicle Routing Problem with Mixed Pickup and Delivery with Time Window, Heterogeneous Fleet, Duration Time and Rest Area. Eng. J. 2021, 25, 71–86. [Google Scholar] [CrossRef]
- Ma, J.; Webb, T.; Schwartz, Z. A Blended Model of Restaurant Deliveries, Dine-in Demand and Capacity Constraints. Int. J. Hosp. Manag. 2021, 96, 102981. [Google Scholar] [CrossRef]
- Rahman, M.S.; Das, S.; Manna, A.K.; Shaikh, A.A.; Bhunia, A.K.; Cárdenas-Barrón, L.E.; Treviño-Garza, G.; Céspedes-Mota, A. A Mathematical Model of the Production Inventory Problem for Mixing Liquid Considering Preservation Facility. Mathematics 2021, 9, 3166. [Google Scholar] [CrossRef]
- Qiu, S.; Ming, X.; Sallak, M.; Lu, J. Joint Optimization of Production and Condition-Based Maintenance Scheduling for Make-to-Order Manufacturing Systems. Comput. Ind. Eng. 2021, 162, 107753. [Google Scholar] [CrossRef]
- Srichok, T.; Pitakaso, R.; Sethanan, K.; Sirirak, W.; Kwangmuang, P. Combined Response Surface Method and Modified Differential Evolution for Parameter Optimization of Friction Stir Welding. Processes 2020, 8, 1080. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, J.; Wang, Y. Planning Strategy of Fast-Charging Stations in Coupled Transportation and Distribution Systems Considering Human Health Impact. Int. J. Electr. Power Energy Syst. 2021, 133, 107316. [Google Scholar] [CrossRef]
- Delorme, M.; Iori, M.; Mendes, N.F.M. Solution Methods for Scheduling Problems with Sequence-Dependent Deterioration and Maintenance Events. Eur. J. Oper. Res. 2021, 295, 823–837. [Google Scholar] [CrossRef]
- Ferreira, K.M.; de Queiroz, T.A.; Toledo, F.M.B. An Exact Approach for the Green Vehicle Routing Problem with Two-Dimensional Loading Constraints and Split Delivery. Comput. Oper. Res. 2021, 136, 105452. [Google Scholar] [CrossRef]
- Chokanat, P.; Pitakaso, R.; Sethanan, K. Methodology to Solve a Special Case of the Vehicle Routing Problem: A Case Study in the Raw Milk Transportation System. AgriEngineering 2019, 1, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
Group | Aijk | Bi | Ui | |||
---|---|---|---|---|---|---|
j = 1 | j = 2 | j = 3 | j = 4 | |||
1 | 2.00(1) | 1.00(7) | 2.50(12) | 0.50(15) | 2.00 | 8.00 |
2 | 7.00(5) | 1.00(4) | 2.00(11) | 1.50(9) | 0.00 | 14.00 |
3 | 1.50(10) | 1.00(14) | 1.50(3) | 7.00(6) | 0.00 | 18.00 |
4 | 2.50(8) | 1.15(2) | 2.50(12) | 2.00(13) | 2.00 | 12.00 |
5 | 1.50(7) | 1.00(4) | 2.50(8) | 1.50(9) | 1.50 | 8.00 |
6 | 1.50(2) | 6.50(6) | 2.50(8) | 1.50(10) | 0.00 | 15.00 |
Business | Detail | Qk (Person) |
---|---|---|
1 | Restaurant | 50 |
2 | Restaurant | 70 |
3 | Restaurant | 30 |
4 | Restaurant | 50 |
5 | Accommodation | 500 |
6 | Accommodation | 300 |
7 | Tourist attraction or POI | 200 |
8 | Tourist attraction or POI | 50 |
9 | Tourist attraction or POI | 100 |
10 | Tourist attraction or POI | 60 |
11 | Tourist attraction or POI | 80 |
12 | Tourist attraction or POI | 90 |
13 | Tourist attraction or POI | 60 |
14 | Tourist attraction or POI | 150 |
15 | Tourist attraction or POI | 120 |
RVjk | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 128.00 | 600.00 | 181.00 | 200.00 | 1249.00 | 1482.00 | 27.00 | 497.00 | 98.00 | 327.00 | 359.00 | 409.00 | 106.00 | 201.00 | 42.00 |
2 | 117.00 | 195.00 | 425.00 | 616.00 | 913.00 | 2399.00 | 55.00 | 136.00 | 53.00 | 207.00 | 138.00 | 179.00 | 455.00 | 381.00 | 376.00 |
3 | 288.00 | 381.00 | 550.00 | 698.00 | 3203.00 | 5455.00 | 139.00 | 253.00 | 267.00 | 98.00 | 116.00 | 482.00 | 83.00 | 441.00 | 231.00 |
4 | 389.00 | 593.00 | 144.00 | 116.00 | 6284.00 | 822.00 | 329.00 | 34.00 | 167.00 | 379.00 | 300.00 | 320.00 | 23.00 | 105.00 | 38.00 |
CCjk | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 76.80 | 240.00 | 63.35 | 60.00 | 374.70 | 592.80 | 10.80 | 149.10 | 34.30 | 147.15 | 179.50 | 163.60 | 47.70 | 120.60 | 23.10 |
2 | 70.20 | 78.00 | 148.75 | 184.80 | 273.90 | 959.60 | 22.00 | 40.80 | 18.55 | 93.15 | 69.00 | 71.60 | 204.75 | 228.60 | 206.80 |
3 | 172.80 | 152.40 | 192.50 | 209.40 | 960.90 | 2182.00 | 55.60 | 75.90 | 93.45 | 44.10 | 58.00 | 192.80 | 37.35 | 264.60 | 127.05 |
4 | 233.40 | 237.20 | 50.40 | 34.80 | 1885.20 | 328.80 | 131.60 | 10.20 | 58.45 | 170.55 | 150.00 | 128.00 | 10.35 | 63.00 | 20.90 |
Profit | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 960.00 | 1000.00 | 0.00 | 0.00 | 2988.00 | 0.00 | 40.80 | 174.00 | 0.00 | 1215.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 0.00 | 475.00 | 0.00 | 1972.00 | 0.00 | 3192.00 | 108.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 972.00 | 0.00 |
3 | 0.00 | 0.00 | 3375.00 | 0.00 | 0.00 | 0.00 | 0.00 | 374.40 | 0.00 | 0.00 | 648.00 | 510.00 | 0.00 | 0.00 | 0.00 |
4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3996.00 | 0.00 | 0.00 | 1161.60 | 456.00 | 0.00 | 0.00 | 0.00 | 0.00 | 414.00 |
SUM | 960.00 | 1475.00 | 3375.00 | 1972.00 | 2988.00 | 7188.00 | 148.80 | 548.40 | 1161.60 | 1671.00 | 648.00 | 510.00 | 0.00 | 972.00 | 414.00 |
TOTAL | 24,031.8 |
Detail | Parameter | Interval Values |
---|---|---|
Input data: | ||
Travel time between locations (hour) | Thk | U [0.05–8.00] |
Sightseeing time (hour) | Aijk | U [1.00–12.00] |
Number of tourists in each group (person) | Di | U [2.00–50.00] |
Servicing capacity (person) | Qk | U [2.00–100.00] |
Earliest arrival time of activity for any business (hour) | Ekij | U [0.00–2.00] |
Latest arrival time of activity for any business (hour) | Fkij | U [0.5–72.00] |
Starting time (hour) | Bi | U [0.00–2.00] |
Finishing time (hour) | Ui | U [0.05–72.00] |
Costs of business (THB/person): Restaurant; Accommodation; Attraction | CCjk | U [70–250]; U [200–3000]; U [10–300] |
Revenue of business (THB/person): Restaurant; Accommodation; Attraction | RVjk | U [100–700]; U [300–7000]; U [20–500] |
Parameter values used in all proposed methods: | ||
Mutation rate | pm | 0.2 |
Crossover rate | pc | 0.8 |
Number of population size | NP | 25 |
Termination condition: Small-size instances; Medium-size instances; Large-size instances | maxGen | 300 iterations; 60 s; 120 s |
Scaling factor | F | 2 |
Crossover rate | CR | 0.8 |
Instance No. | Number of Locations (K) | Number of Tourists (i) | Number of Activities (j) | Total Number of Tourists (Person) |
---|---|---|---|---|
1 | 3 | 3 | 3 | 60 |
2 | 4 | 4 | 3 | 153 |
3 | 5 | 4 | 4 | 125 |
4 | 5 | 5 | 4 | 135 |
5 | 5 | 6 | 4 | 197 |
6 | 6 | 8 | 4 | 169 |
7 | 8 | 8 | 4 | 231 |
8 | 8 | 10 | 5 | 277 |
9 | 9 | 10 | 4 | 136 |
10 | 9 | 12 | 6 | 395 |
11 | 10 | 12 | 3 | 364 |
12 | 10 | 14 | 6 | 368 |
13 | 12 | 15 | 3 | 389 |
14 | 15 | 15 | 4 | 372 |
15 | 15 | 20 | 3 | 556 |
16 | 20 | 20 | 5 | 635 |
17 | 30 | 30 | 5 | 792 |
18 | 30 | 30 | 6 | 803 |
19 | 40 | 40 | 6 | 941 |
20 | 50 | 40 | 6 | 1085 |
Instance No. | Lingo V.18 | Proposed Method | Comp. Time (s) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Profit (THB) | Comp. Time (s) | Total Profit (THB) | ||||||||||
CP | DE | HDEVNS | GA | HGAKV | CP | DE | HDEVNS | GA | HGAKV | |||
1 | 23,400.00 | 2.00 | 23,400.00 | 23,400.00 | 23,400.00 | 23,400.00 | 23,400.00 | 16.13 | 22.08 | 20.32 | 23.40 | 25.10 |
2 | 59,670.00 | 2.00 | 36,780.00 | 59,670.00 | 59,670.00 | 59,670.00 | 59,670.00 | 31.08 | 22.22 | 28.10 | 24.20 | 31.50 |
3 | 65,000.00 | 3.00 | 55,400.00 | 65,000.00 | 65,000.00 | 65,000.00 | 65,000.00 | 39.65 | 42.63 | 44.20 | 43.50 | 50.10 |
4 | 70,200.00 | 5.00 | 54,890.00 | 70,200.00 | 70,200.00 | 70,200.00 | 70,200.00 | 29.31 | 34.98 | 36.20 | 37.10 | 39.30 |
5 | 102,440.00 | 8.00 | 78,290.00 | 102,440.00 | 102,440.00 | 102,440.00 | 102,440.00 | 54.90 | 35.23 | 44.20 | 37.40 | 49.20 |
6 | 97,880.00 BOF | 28,800.00 | 57,030.00 | 78,520.00 | 81,640.00 | 78,510.00 | 81,710.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
7 | 120,120.00 BOF | 28,800.00 | 93,290.00 | 105,960.00 | 109,120.00 | 106,200.00 | 115,180.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
8 | 130,050.00 BOF | 28,800.00 | 65,030.00 | 87,750.00 | 97,500.00 | 87,900.00 | 111,530.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
9 | 90,720.00 BOF | 28,800.00 | 60,010.00 | 63,440.00 | 64,480.00 | 63,440.00 | 64,480.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
10 | 168,100.00 BOF | 28,800.00 | 74,930.00 | 108,600.00 | 115,440.00 | 114,600.00 | 131,480.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
11 | 191,960.00 BOF | 28,800.00 | 91,120.00 | 140,010.00 | 141,960.00 | 139,120.00 | 152,690.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
12 | 107,120.00 BOF | 28,800.00 | 49,320.00 | 69,640.00 | 70,200.00 | 70,550.00 | 95,660.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 |
13 | 161,710.00 UB | 28,800.00 | 83,380.00 | 149,370.00 | 150,540.00 | 148,910.00 | 155,490.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
14 | 193,440.00 UB | 28,800.00 | 90,120.00 | 141,440.00 | 151,840.00 | 144,310.00 | 165,720.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
15 | 216,840.00 UB | 28,800.00 | 113,900.00 | 185,640.00 | 197,730.00 | 189,930.00 | 200,100.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
16 | 302,750.00 UB | 28,800.00 | 108,240.00 | 190,450.00 | 198,250.00 | 197,120.00 | 223,530.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
17 | 284,800.00 UB | 28,800.00 | 122,370.00 | 206,700.00 | 231,400.00 | 226,500.00 | 242,370.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
18 | 226,340.00 UB | 28,800.00 | 99,810.00 | 153,660.00 | 161,460.00 | 156,000.00 | 199,290.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
19 | 233,980.00 UB | 28,800.00 | 132,080.00 | 204,360.00 | 189,540.00 | 200,900.00 | 221,880.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
20 | 366,300.00 UB | 28,800.00 | 159,020.00 | 247,260.00 | 280,800.00 | 256,600.00 | 313,670.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
DE | HDEVNS | GA | HGAKV | |
---|---|---|---|---|
CP | 0.001 | 0.001 | 0.001 | 0.001 |
DE | - | 0.008 | 0.035 | 0.001 |
HDEVNS | - | - | 0.011 | 0.001 |
GA | - | - | - | 0.001 |
Instance No. | HP (%) | RI (%) | RI (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
The Proposed Methods Compared to the MILP | The Proposed Methods Compared to the CP Algorithm | The Proposed Methods Compared to the HGAKV Algorithm | ||||||||||
CP | DE | HDEVNS | GA | HGAKV | DE | HDEVNS | GA | HGAKV | DE | HDEVNS | GA | |
1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 61.64 | 100.00 | 100.00 | 100.00 | 100.00 | 38.36 | 38.36 | 38.36 | 38.36 | 0.00 | 0.00 | 0.00 |
3 | 85.23 | 100.00 | 100.00 | 100.00 | 100.00 | 14.77 | 14.77 | 14.77 | 14.77 | 0.00 | 0.00 | 0.00 |
4 | 78.19 | 100.00 | 100.00 | 100.00 | 100.00 | 21.81 | 21.81 | 21.81 | 21.81 | 0.00 | 0.00 | 0.00 |
5 | 76.43 | 100.00 | 100.00 | 100.00 | 100.00 | 23.57 | 23.57 | 23.57 | 23.57 | 0.00 | 0.00 | 0.00 |
6 | 58.27 | 80.22 | 83.41 | 80.21 | 83.48 | 27.37 | 30.14 | 27.36 | 30.20 | 3.90 | 0.09 | 3.92 |
7 | 77.66 | 88.21 | 90.84 | 88.41 | 95.89 | 11.96 | 14.51 | 12.16 | 19.01 | 8.00 | 5.26 | 7.80 |
8 | 50.00 | 67.47 | 74.97 | 67.59 | 85.76 | 33.30 | 33.30 | 26.02 | 41.69 | 21.32 | 12.58 | 21.19 |
9 | 66.15 | 69.93 | 71.08 | 69.93 | 71.08 | 5.41 | 6.93 | 5.41 | 6.93 | 1.61 | 0.00 | 1.61 |
10 | 44.57 | 64.60 | 68.67 | 68.17 | 78.22 | 31.00 | 35.09 | 34.62 | 43.01 | 17.40 | 12.20 | 12.84 |
11 | 47.47 | 72.94 | 73.95 | 72.47 | 79.54 | 34.92 | 35.81 | 34.50 | 40.32 | 8.30 | 7.03 | 8.89 |
12 | 46.04 | 65.01 | 65.53 | 65.86 | 89.30 | 29.18 | 29.74 | 30.09 | 48.44 | 27.20 | 26.62 | 26.25 |
13 | 51.56 | 92.37 | 93.09 | 92.08 | 96.15 | 44.18 | 44.61 | 44.01 | 46.38 | 3.94 | 3.18 | 4.23 |
14 | 46.59 | 73.12 | 78.49 | 74.60 | 85.67 | 36.28 | 40.65 | 37.55 | 45.62 | 14.65 | 8.38 | 12.92 |
15 | 52.53 | 85.61 | 91.19 | 87.59 | 92.28 | 38.64 | 42.40 | 40.03 | 43.08 | 7.23 | 1.18 | 5.08 |
16 | 35.75 | 62.91 | 65.48 | 65.11 | 73.83 | 43.17 | 45.40 | 45.09 | 51.58 | 14.80 | 11.31 | 11.81 |
17 | 42.97 | 72.58 | 81.25 | 79.53 | 85.10 | 40.80 | 47.12 | 45.97 | 49.51 | 14.72 | 4.53 | 6.55 |
18 | 44.10 | 67.89 | 71.34 | 68.92 | 88.05 | 35.04 | 38.18 | 36.02 | 49.92 | 22.90 | 18.98 | 21.72 |
19 | 56.45 | 87.34 | 81.01 | 85.86 | 94.83 | 35.37 | 30.32 | 34.26 | 40.47 | 7.90 | 14.58 | 9.46 |
20 | 43.41 | 67.50 | 76.66 | 70.05 | 85.63 | 35.69 | 43.37 | 38.03 | 49.30 | 21.17 | 10.48 | 18.19 |
MAX | 56.16 | 100.00 | 100.00 | 100.00 | 100.00 | 44.18 | 47.12 | 45.97 | 51.58 | 27.20 | 26.62 | 26.25 |
MIN | 55.89 | 62.91 | 65.48 | 65.11 | 71.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
AVG | 58.25 | 80.89 | 83.35 | 81.82 | 89.24 | 29.04 | 30.80 | 29.48 | 35.20 | 9.75 | 6.82 | 8.62 |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | Scenario 8 | |
---|---|---|---|---|---|---|---|---|
Revenue + 5%; Cost + 5% | Revenue + 5%; Cost − 5% | Revenue − 5%; Cost + 5% | Revenue − 5%; Cost − 5% | Revenue + 10%; Cost + 10% | Revenue + 10%; Cost − 10% | Revenue − 10%; Cost +10% | Revenue − 10%; Cost − 10% | |
Business no. 3: Restaurant | ||||||||
Revenue | 157.50 | 157.50 | 142.5 | 142.5 | 165.00 | 165.00 | 135.00 | 135.00 |
Cost | 78.75 | 71.25 | 78.75 | 71.25 | 82.50 | 67.50 | 82.50 | 67.5 |
Profit | 3543.75 | 3881.25 | 2868.75 | 3206.25 | 3712.50 | 4387.50 | 2362.50 | 3037.50 |
% Change in profit | 5.00% | 15.00% | (15.00%) | (5.00%) | 10.00% | 30.00% | (30.00%) | (10.00%) |
Business no. 6: Hotel | ||||||||
Revenue | 652.05 | 652.05 | 589.95 | 589.95 | 683.10 | 683.10 | 558.90 | 558.90 |
Cost | 391.23 | 353.97 | 391.23 | 353.97 | 409.86 | 335.34 | 409.86 | 335.34 |
Profit | 7547.40 | 8625.60 | 5750.40 | 6828.60 | 7906.80 | 10,063.20 | 4312.80 | 6469.20 |
% Change in profit | 5.00% | 20.00% | (20.00%) | (5.00%) | 10.00% | 40.00% | (40.00%) | (10.00%) |
Business no. 10: Attraction | ||||||||
Revenue | 87.15 | 87.15 | 78.85 | 78.85 | 91.30 | 91.30 | 74.70 | 74.70 |
Cost | 34.86 | 31.54 | 34.86 | 31.54 | 36.52 | 29.88 | 36.52 | 29.88 |
Profit | 1754.55 | 1865.95 | 1476.05 | 1587.45 | 1838.10 | 2060.90 | 1281.10 | 1503.90 |
% Change in profit | 5.00% | 11.67% | (11.67%) | (5.00%) | 10.00% | 23.33% | (23.33%) | (10.00%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thumrongvut, P.; Sethanan, K.; Jamrus, T.; Wongloucha, C.; Pitakaso, R.; Golinska-Dawson, P. Metaheuristics in Business Model Development for Local Tourism Sustainability Enhancement. Mathematics 2022, 10, 4750. https://doi.org/10.3390/math10244750
Thumrongvut P, Sethanan K, Jamrus T, Wongloucha C, Pitakaso R, Golinska-Dawson P. Metaheuristics in Business Model Development for Local Tourism Sustainability Enhancement. Mathematics. 2022; 10(24):4750. https://doi.org/10.3390/math10244750
Chicago/Turabian StyleThumrongvut, Pawnrat, Kanchana Sethanan, Thitipong Jamrus, Chuleeporn Wongloucha, Rapeepan Pitakaso, and Paulina Golinska-Dawson. 2022. "Metaheuristics in Business Model Development for Local Tourism Sustainability Enhancement" Mathematics 10, no. 24: 4750. https://doi.org/10.3390/math10244750
APA StyleThumrongvut, P., Sethanan, K., Jamrus, T., Wongloucha, C., Pitakaso, R., & Golinska-Dawson, P. (2022). Metaheuristics in Business Model Development for Local Tourism Sustainability Enhancement. Mathematics, 10(24), 4750. https://doi.org/10.3390/math10244750