Applying the Push-Pull Mooring to Explore Consumers’ Shift from Physical to Online Purchases of Face Masks
Abstract
:1. Introduction
2. Literature Review
2.1. Relevant Studies on Protective Face Masks during the Pandemic
2.2. The Migration of Population Theory and Push–Pull–Mooring
2.3. Push Factors
2.4. Pull Factors
2.5. The Mooring Factor
3. Research Model and Hypotheses
3.1. Research Model
3.2. Hypotheses
3.2.1. Push Factors
3.2.2. Pull Factors
3.2.3. The Mooring Factor
3.3. Construct Operationalization
3.4. Data Collection
4. Results
4.1. Measurement Model
4.2. Structural Model
5. Discussions and Conclusions
5.1. Practical Implications
5.2. Implications for Research
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Addo, P.C.; Fang, J.; Kulbo, N.B.; Li, L. COVID-19: Fear appeal favoring purchase behavior towards personal protective equipment. Serv. Ind. J. 2020, 40, 471–490. [Google Scholar] [CrossRef] [Green Version]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar] [CrossRef] [PubMed]
- Chin, T.; Wang, S.; Rowley, C. Polychronic knowledge creation in cross-border business models: A sea-like heuristic metaphor. J. Knowl. Manag. 2021, 25, 1–22. [Google Scholar] [CrossRef]
- Wang, S.; Chin, T. A stratified system of knowledge and knowledge icebergs in cross-cultural business models: Synthesising ontological and epistemological views. J. Int. Manag. 2020, 26, 100780. [Google Scholar] [CrossRef]
- Chin, T.; Meng, J.; Wang, S.; Shi, Y.; Zhang, J. Cross-cultural metacognition as a prior for humanitarian knowledge: When cultures collide in global health emergencies. J. Knowl. Manag. 2021, 26, 88–101. [Google Scholar] [CrossRef]
- Srivastava, S.; Khokhar, F.; Madhav, A.; Pembroke, B.; Shetty, V.; Mutreja, A. COVID-19 Lessons for Climate Change and Sustainable Health. Energies 2021, 14, 5938. [Google Scholar] [CrossRef]
- Foroughi, A.; Buang, N.A.; Senik, Z.C.; Hajmisadeghi, R.S. Impulse buying behavior and moderating role of gender among Iranian shoppers. J. Basic Appl. Sci. Res. 2013, 3, 760–769. [Google Scholar]
- Su, V.-Y.F.; Yen, Y.F.; Yang, K.Y.; Su, W.J.; Chou, K.T.; Chen, Y.M.; Perng, D.W. Masks and medical care: Two keys to Taiwan’s success in preventing COVID-19 spread. Travel Med. Infect. Dis. 2020, 38, 101780. [Google Scholar]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action Control; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Wu, K.; Vassileva, J.; Noorian, Z.; Zhao, Y. How do you feel when you see a list of prices? The interplay among price dispersion, perceived risk and initial trust in Chinese C2C market. J. Retail. Consum. Serv. 2015, 25, 36–46. [Google Scholar] [CrossRef]
- Wu, K.; Vassileva, J.; Zhao, Y. Understanding users’ intention to switch personal cloud storage services: Evidence from the Chinese market. Comput. Hum. Behav. 2017, 68, 300–314. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, L. An empirical study of brand microblog users’ unfollowing motivations: The perspective of push-pull-mooring model. Int. J. Inf. Manag. 2020, 52, 102066. [Google Scholar] [CrossRef]
- Xu, Y.C.; Yang, Y.; Cheng, Z.; Lim, J. Retaining and attracting users in social networking services: An empirical investigation of cyber migration. J. Strateg. Inf. Syst. 2014, 23, 239–253. [Google Scholar] [CrossRef]
- Oliver, P.; Marwell, G.; Teixeira, R. A theory of the critical mass. I. Interdependence, group heterogeneity, and the production of collective action. Am. J. Sociol. 1985, 91, 522–556. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.C.; Shiau, W.-L. Understanding Facebook to Instagram migration: A push-pull migration model perspective. Inf. Technol. People 2019, 33, 272–295. [Google Scholar] [CrossRef]
- Hou, A.C.; Chern, C.-C.; Chen, H.-G.; Chen, Y.-C. ‘Migrating to a new virtual world’: Exploring MMORPG switching through human migration theory. Comput. Hum. Behav. 2011, 27, 1892–1903. [Google Scholar] [CrossRef]
- Lai, J.Y.; Debbarma, S.; Ulhas, K.R. An empirical study of consumer switching behaviour towards mobile shopping: A Push-Pull-Mooring model. Int. J. Mob. Commun. 2012, 10, 386–404. [Google Scholar] [CrossRef]
- Anderson, W.P.; Chatterjee, L.; Lakshmanan, T.R. E-commerce, transportation, and economic geography. Growth Chang. 2003, 34, 415–432. [Google Scholar] [CrossRef]
- Haq, M.; Abbasi, S. Indirect Impact of Hedonic Consumption and Emotions on Impulse Purchase Behavior: A Double Mediation Model. J. Manag. Sci. 2016, 3, 108–122. [Google Scholar] [CrossRef]
- Shibuya, Y.; Lai, C.-M.; Hamm, A.; Takagi, S.; Sekimoto, Y. Do open data impact citizens’ behavior? Assessing face mask panic buying behaviors during the COVID-19 pandemic. Sci. Rep. 2022, 12, 17607. [Google Scholar] [CrossRef]
- Tsou, T.-P.; Chen, W.-C.; Huang, A.S.-E.; Chang, S.-C.; Su, C.-P.; Lee, P.-H.; Chan, P.-C.; Wu, H.-H.; Huang, S.-T.; Su, W.-J.; et al. Epidemiology of the first 100 cases of COVID-19 in Taiwan and its implications on outbreak control. J. Formos. Med. Assoc. 2020, 119, 1601–1607. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, W.H.; Urbina, A.N.; Tseng, S.P.; Lu, P.L.; Chen, Y.H.; Yu, M.L.; Wang, S.F. Importation of SARS-CoV-2 infection leads to major COVID-19 epidemic in Taiwan. Int. J. Infect. Dis. 2020, 97, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Handarkho, Y.D.; Harjoseputro, Y. Intention to adopt mobile payment in physical stores. J. Enterp. Inf. Manag. 2019, 33, 285–308. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, K.Z.; Yu, Y. Switching from hotels to peer-to-peer accommodation: An empirical study. Inf. Technol. People 2019, 32, 1657–1678. [Google Scholar] [CrossRef]
- Chang, I.-C.; Liu, C.-C.; Chen, K. The push, pull and mooring effects in virtual migration for social networking sites. Inf. Syst. J. 2014, 24, 323–346. [Google Scholar] [CrossRef]
- Chang, H.H.; Wong, K.H.; Li, S.Y. Applying push-pull-mooring to investigate channel switching behaviors: M-shopping self-efficacy and switching costs as moderators. Electron. Commer. Res. Appl. 2017, 24, 50–67. [Google Scholar] [CrossRef]
- Hou, A.C.; Shang, R.A.; Huang, C.C.; Wu, K.L. The effects of Push-pull-mooring on the Switching Model for Social Network sites Migration. In Proceedings of the PACIS, Chengdu, China, 24–28 June 2014; p. 64. [Google Scholar]
- Iyamu, I.; Apantaku, G.; Yesufu, Z.; Oladele, E.A.; Eboreime, E.; Afirima, B.; Okechukwu, E.; Kibombwe, G.I.; Oladele, T.; Tafuma, T.; et al. Is social media, as a main source of information on COVID-19, associated with perceived effectiveness of face mask use? Findings from six sub-Saharan African countries. Glob. Health Promot. 2022, 29, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Fatfouta, R.; Oganian, Y. Face masks drive increased rational decision-making. Curr. Psychol. 2022, 4, 1–10. [Google Scholar] [CrossRef]
- Wismans, A.; van der Zwan, P.; Wennberg, K.; Franken, I.; Mukerjee, J.; Baptista, R.; Marín, J.B.; Burke, A.; Dejardin, M.; Janssen, F.; et al. Face mask use during the COVID-19 pandemic: How risk perception, experience with COVID-19, and attitude towards government interact with country-wide policy stringency. BMC Public Health 2022, 22, 1622. [Google Scholar] [CrossRef]
- Meo, S.A.; Alqahtani, S.A.; Aljedaie, G.M.; Binmeather, F.S.; AlRasheed, R.A.; Albarrak, R.M. Face Masks Use and Its Role in Restraining the Spread of COVID-19 Pandemic in Saudi Arabia: Knowledge, Attitude, and Practices Based Cross-Sectional Study. Front. Public Health 2022, 9, 818520. [Google Scholar] [CrossRef]
- Hanna, E.; Martin, G.; Campbell, A.; Connolly, P.; Fearon, K.; Markham, S. Experiences of face mask use during the COVID-19 pandemic: A qualitative study. Sociol. Health Illn. 2022, 44, 1481–1499. [Google Scholar] [CrossRef]
- Lee, E.S. A theory of migration. Demography 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Moon, B. Paradigms in migration research: Exploring ‘moorings’ as a schema. Prog. Hum. Geogr. 1995, 19, 504–524. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.; Halfacree, K. Migration into Rural Areas: Theories and Issues; John Wiley and Sons Ltd.: New York, NY, USA, 1998. [Google Scholar]
- Maslach, C.; Jackson, S.E.; Leiter, M.P.; Schaufeli, W.B.; Schwab, R.L. Maslach Burnout Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1986; Volume 21, pp. 3463–3464. [Google Scholar]
- Nayak, B.; Bhattacharyya, S.S.; Goswami, S.; Thakre, S. Adoption of online education channel during the COVID-19 pandemic and associated economic lockdown: An empirical study from push–pull-mooring framework. J. Comput. Educ. 2022, 9, 1–23. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Chen, D.C. Consumers’ Switching from Cash to Mobile Payment under the Fear of COVID-19 in Taiwan. Sustainability 2022, 14, 8489. [Google Scholar] [CrossRef]
- Jeong, D.; Ko, E.; Taylor, C.R. Don’t touch the Merchandise! Factors associated with consumer preference for contact free shopping. J. Bus. Res. 2023, 154, 113261. [Google Scholar] [CrossRef]
- Cheng, S.; Lee, S.-J.; Choi, B. An empirical investigation of users’ voluntary switching intention for mobile personal cloud storage services based on the push-pull-mooring framework. Comput. Hum. Behav. 2019, 92, 198–215. [Google Scholar] [CrossRef]
- Jacoby, J.; Kaplan, L.B. The components of perceived risk. In Proceedings of the Annual Conference of the Association for Consumer Research, Chicago, IL, USA, 3–5 November 1972. [Google Scholar]
- Peter, J.P.; Tarpey Sr, L.X. A comparative analysis of three consumer decision strategies. J. Consum. Res. 1975, 2, 29–37. [Google Scholar] [CrossRef]
- Hsu, C.L.; Lu, H.P. Why do people play on-line games? An extended TAM with social influences and flow experience. Inf. Manag. 2004, 41, 853–868. [Google Scholar] [CrossRef]
- Lin, C.L.; Jin, Y.Q.; Zhao, Q.; Yu, S.W.; Su, Y.S. Factors influence students’ switching behavior to online learning under COVID-19 pandemic: A push–pull–mooring model perspective. Asia-Pac. Educ. Res. 2021, 30, 229–245. [Google Scholar] [CrossRef]
- Jin, Y.Q.; Lin, C.L.; Zhao, Q.; Yu, S.W.; Su, Y.S. A study on traditional teaching method transferring to E-learning under the COVID-19 pandemic: From Chinese students’ perspectives. Front. Psychol. 2021, 12, 632787. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, J.-S.; Xiong, L. Media exposure and individuals’ emergency preparedness behaviors for coping with natural and human-made disasters. J. Environ. Psychol. 2019, 63, 82–91. [Google Scholar] [CrossRef]
- Yıldırım, M.; Güler, A. Positivity explains how COVID-19 perceived risk increases death distress and reduces happiness. Pers. Individ. Differ. 2021, 168, 110347. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lin, C.L.; Chen, C.D.; Yang, S.C. The adoption of wikipedia: A community-and information quality-based view. In Proceedings of the PACIS 2008, Suzhou, China, 4–7 July 2008; p. 50. [Google Scholar]
- Chen, Y.H.; Keng, C.J. Utilizing the Push-Pull-Mooring-Habit framework to explore users’ intention to switch from offline to online real-person English learning platform. Internet Res. 2019, 29, 167–193. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Shiau, W.-L.; Sarstedt, M.; Hair, J.F. Internet research using partial least squares structural equation modeling (PLS-SEM). Internet Res. 2019, 29, 398–406. [Google Scholar] [CrossRef]
- Huang, L.C.; Shiau, W.L. Factors affecting creativity in information system development: Insights from a decomposition and PLS-MGA. Ind. Manag. Data Syst. 2017, 117, 496–520. [Google Scholar] [CrossRef]
- Shiau, W.L.; Luo, M.M. Factors affecting online group buying intention and satisfaction: A social exchange theory perspective. Comput. Hum. Behav. 2012, 28, 2431–2444. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. Common beliefs and reality about partial least squares: Comments on Rönkkö and Evermann (2013). Organ. Res. Methods 2014, 17, 182–209. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
Construct | Factor Loading | α | roh_A | CR | AVE | VIF |
---|---|---|---|---|---|---|
Time risk (TR) | 0.928 *** 0.923 *** 0.919 *** | 0.914 | 0.915 | 0.946 | 0.853 | 1.775 |
Psychological risk (PR) | 0.770 *** 0.777 *** 0.840 *** | 0.712 | 0.713 | 0.839 | 0.634 | 2.089 |
Social risk (SR) | 0.909 *** 0.915 *** 0.938 *** | 0.911 | 0.931 | 0.944 | 0.848 | 1.239 |
Alternative attractiveness (AA) | 0.987 *** 0.938 *** 0.948 *** | 0.911 | 0.918 | 0.944 | 0.850 | 1.547 |
Critical mass (CM) | 0.844 *** 0.897 *** 0.905 *** | 0.858 | 0.864 | 0.913 | 0.778 | 1.379 |
Switching cost (SC) | 0.914 *** 0.944 *** 0.913 *** | 0.914 | 0.920 | 0.946 | 0.853 | 1.228 |
Switching intention (SI) | 0.941 *** 0.932 *** 0.953 *** | 0.936 | 0.937 | 0.959 | 0.887 | DV |
AA | CM | PR | SR | SC | SI | TR | |
---|---|---|---|---|---|---|---|
AA | 0.922 | ||||||
CM | 0.497 | 0.882 | |||||
PR | −0.221 | −0.314 | 0.796 | ||||
SR | −0.136 | −0.145 | 0.420 | 0.921 | |||
SC | −0.318 | −0.130 | −0.125 | −0.139 | 0.924 | ||
SI | 0.551 | 0.485 | −0.247 | −0.173 | −0.436 | 0.942 | |
TR | −0.144 | −0.171 | 0.652 | 0.175 | −0.241 | −0.059 | 0.924 |
AA | CM | SR | SC | SI | TR | |
---|---|---|---|---|---|---|
AA | ||||||
CM | 0.557 | |||||
SR | 0.155 | 0.164 | ||||
SC | 0.348 | 0.136 | 0.150 | |||
SI | 0.595 | 0.534 | 0.189 | 0.467 | ||
TR | 0.161 | 0.199 | 0.184 | 0.261 | 0.065 |
Construct | Sub-Construct | Weights |
---|---|---|
Perceived risk | Time risk (TR) | 0.487 *** |
Psychological risk (PR) | 0.399 *** | |
Social risk (SR) | 0.393 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.-W.; Liu, J.-Y.; Lin, C.-L.; Su, Y.-S. Applying the Push-Pull Mooring to Explore Consumers’ Shift from Physical to Online Purchases of Face Masks. Mathematics 2022, 10, 4761. https://doi.org/10.3390/math10244761
Yu S-W, Liu J-Y, Lin C-L, Su Y-S. Applying the Push-Pull Mooring to Explore Consumers’ Shift from Physical to Online Purchases of Face Masks. Mathematics. 2022; 10(24):4761. https://doi.org/10.3390/math10244761
Chicago/Turabian StyleYu, Sung-Wen, Jun-Yan Liu, Chien-Liang Lin, and Yu-Sheng Su. 2022. "Applying the Push-Pull Mooring to Explore Consumers’ Shift from Physical to Online Purchases of Face Masks" Mathematics 10, no. 24: 4761. https://doi.org/10.3390/math10244761
APA StyleYu, S. -W., Liu, J. -Y., Lin, C. -L., & Su, Y. -S. (2022). Applying the Push-Pull Mooring to Explore Consumers’ Shift from Physical to Online Purchases of Face Masks. Mathematics, 10(24), 4761. https://doi.org/10.3390/math10244761