Developing a Spine Internal Rotation Angle Measurement System Based Machine Learning Using CT Reconstructed X-ray Anteroposterior Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Subjects and 3D Computed Tomography Data Acquisition
2.2. Raw Data Acquisition and Measurement Variables of Spine Rotation Using 3D CT Data
2.3. Predictive Model Reproducibility Experiment
2.4. Gaussian Process Algorithm Showing Minimum RMSE Value
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Altaf, F.; Gibson, A.; Dannawi, Z.; Noordeen, H. Adolescent idiopathic scoliosis. BMJ 2013, 346, f2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, M. The adult scoliosis. Eur. Spine J. 2005, 14, 925–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, S.; Larson, A.N.; Kaufman, K.R.; Milbrandt, T.A. Accelerometer based assessment of daily physical activity and sedentary time in adolescents with idiopathic scoliosis. PLoS ONE 2020, 15, e0238181. [Google Scholar] [CrossRef] [PubMed]
- Machida, M. Cause of idiopathic scoliosis. Spine 1999, 24, 2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popko, J.; Kwiatkowski, M.; Gałczyk, M. Scoliosis: Review of diagnosis and treatment. Pol. J. Appl. Sci. 2018, 4, 31–35. [Google Scholar]
- Janicki, J.A.; Alman, B. Scoliosis: Review of diagnosis and treatment. Paediatr. Child Health 2007, 12, 771–776. [Google Scholar] [CrossRef] [Green Version]
- McCance, S.E.; Denis, F.; Lonstein, J.E.; Winter, R.B. Coronal and sagittal balance in surgically treated adolescent idiopathic scoliosis with the King II curve pattern: A review of 67 consecutive cases having selective thoracic arthrodesis. Spine 1998, 23, 2063–2073. [Google Scholar] [CrossRef]
- Morrissy, R.T.; Goldsmith, G.S.; Hall, E.C.; Kehl, D.; Cowie, G.H. Measurement of the Cobb angle on radiographs of patients who have. J. Bone Jt. Surg. Am. 1990, 72, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Brink, R.C.; Homans, J.F.; Schlösser, T.P.; van Stralen, M.; Vincken, K.L.; Shi, L.; Chu, W.C.; Viergever, M.A.; Castelein, R.M.; Cheng, J.C. CT-based study of vertebral and intravertebral rotation in right thoracic adolescent idiopathic scoliosis. Eur. Spine J. 2019, 28, 3044–3052. [Google Scholar] [CrossRef] [Green Version]
- Courvoisier, A.; Drevelle, X.; Vialle, R.; Dubousset, J.; Skalli, W. 3D analysis of brace treatment in idiopathic scoliosis. Eur. Spine J. 2013, 22, 2449–2455. [Google Scholar] [CrossRef] [Green Version]
- Lechner, R.; Putzer, D.; Dammerer, D.; Liebensteiner, M.; Bach, C.; Thaler, M. Comparison of two-and three-dimensional measurement of the Cobb angle in scoliosis. Int. Orthop. 2017, 41, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Tauchi, R.; Tsuji, T.; Cahill, P.J.; Flynn, J.M.; Glotzbecker, M.; El-Hawary, R.; Heflin, J.A.; Imagama, S.; Joshi, A.P.; Nohara, A. Reliability analysis of Cobb angle measurements of congenital scoliosis using X-ray and 3D-CT images. Eur. J. Orthop. Surg. Traumatol. 2016, 26, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Langensiepen, S.; Semler, O.; Sobottke, R.; Fricke, O.; Franklin, J.; Schönau, E.; Eysel, P. Measuring procedures to determine the Cobb angle in idiopathic scoliosis: A systematic review. Eur. Spine J. 2013, 22, 2360–2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medica, E.M. Brace treatment of Idiopathic Scoliosis is effective for a curve over 40 degrees, but is the evaluation of Cobb angle the only parameter for the indication of treatment? Eur. J. Phys. Rehabil. Med. 2019, 55, 231–240. [Google Scholar]
- Shaw, M.; Adam, C.J.; Izatt, M.T.; Licina, P.; Askin, G.N. Use of the iPhone for Cobb angle measurement in scoliosis. Eur. Spine J. 2012, 21, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Ho, E.K.; Upadhyay, S.S.; Chan, F.L.; Hsu, L.C.; Leong, J.C. New methods of measuring vertebral rotation from computed tomographic scans. An intraobserver and interobserver study on girls with scoliosis. Spine 1993, 18, 1173–1177. [Google Scholar] [CrossRef]
- Vavruch, L.; Forsberg, D.; Dahlström, N.; Tropp, H. Vertebral axial asymmetry in adolescent idiopathic scoliosis. Spine Deform. 2018, 6, 112–120.e1. [Google Scholar] [CrossRef]
- Koreska, J.; Gibson, D.A.; Robertson, D. Three-dimensional analysis of spinal deformities. J. Eng. Mech. Div. 1978, 104, 239–253. [Google Scholar] [CrossRef]
- Roaf, R. Rotation movements of the spine with special reference to scoliosis. J. Bone Jt. Surg. Br. Vol. 1958, 40, 312–332. [Google Scholar] [CrossRef]
- Lafage, V.; Leborgne, P.; Mitulescu, A.; Dubousset, J.; Lavaste, F.; Skalli, W. Comparison of Mechanical Behaviour of Normal and Scoliotic Vertebral Segment: A Preliminary Numerical Approach; Research into Spinal Deformities 3; IOS Press: Amsterdam, The Netherlands, 2002; pp. 340–344. [Google Scholar]
- Beuerlein, M.J.; Raso, V.J.; Hill, D.L.; Moreau, M.J.; Mahood, J.K. The relationship between axial rotation and lateral bending. Stud. Health Technol. Inform. 1999, 9, 105–108. [Google Scholar]
- Kjellberg, M.; Al-Amiry, B.; Englund, E.; Sjödén, G.O.; Sayed-Noor, A.S. Measurement of leg length discrepancy after total hip arthroplasty. The reliability of a plain radiographic method compared to CT-scanogram. Skelet. Radiol. 2012, 41, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Wessberg, P.; Danielson, B.I.; Willén, J. Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine 2006, 31, 3039–3044. [Google Scholar] [CrossRef] [PubMed]
- Vock, P. CT dose reduction in children. Eur. Radiol. 2005, 15, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, P.S.; Kuszyk, B.S.; Heath, D.G.; Carley, J.C.; Fishman, E.K. Three-dimensional volume rendering of spiral CT data: Theory and method. Radiographics 1999, 19, 745–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, Y.; Tanaka, M.; Nakanishi, K.; Misawa, H.; Takigawa, T.; Ozaki, T. Predicting intraoperative vertebral rotation in patients with scoliosis using posterior elements as anatomical landmarks. Spine 2007, 32, E761–E763. [Google Scholar] [CrossRef] [Green Version]
- Delorme, S.; Labelle, H.; Aubin, C.; de Guise, J.A.; Rivard, C.H.; Poitras, B.; Coillard, C.; Dansereau, J. Intraoperative comparison of two instrumentation techniques for the correction of adolescent idiopathic scoliosis: Rod rotation and translation. Spine 1999, 24, 2011–2017. [Google Scholar] [CrossRef]
- Lafon, Y.; Lafage, V.; Dubousset, J.; Skalli, W. Intraoperative three-dimensional correction during rod rotation technique. Spine 2009, 34, 512–519. [Google Scholar] [CrossRef]
- Lam, G.C.; Hill, D.L.; Le, L.H.; Raso, J.V.; Lou, E.H. Vertebral rotation measurement: A summary and comparison of common radiographic and CT methods. Scoliosis 2008, 3, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Perdriolle, R.; Vidal, J. Thoracic idiopathic scoliosis curve evolution and prognosis. Spine 1985, 10, 785–791. [Google Scholar] [CrossRef]
- Drerup, B. Principles of measurement of vertebral rotation from frontal projections of the pedicles. J. Biomech. 1984, 17, 923–935. [Google Scholar] [CrossRef]
- Stokes, I.A.; Bigalow, L.C.; Moreland, M.S. Measurement of axial rotation of vertebrae in scoliosis. Spine 1986, 11, 213–218. [Google Scholar] [CrossRef] [PubMed]
Parameters | Measurement Methods | Data Acquisition Range |
---|---|---|
RSAA 1 |
| −22.3–24.19° |
A |
| 0.15–11.30 mm |
B |
| 1.03–11.11 mm |
C |
| 14.38–35.44 mm |
D |
| 12.54–30.13 mm |
F |
| −7.44–4.9° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.-S.; Yu, S.-M. Developing a Spine Internal Rotation Angle Measurement System Based Machine Learning Using CT Reconstructed X-ray Anteroposterior Image. Mathematics 2022, 10, 4781. https://doi.org/10.3390/math10244781
Kang T-S, Yu S-M. Developing a Spine Internal Rotation Angle Measurement System Based Machine Learning Using CT Reconstructed X-ray Anteroposterior Image. Mathematics. 2022; 10(24):4781. https://doi.org/10.3390/math10244781
Chicago/Turabian StyleKang, Tae-Seok, and Seung-Man Yu. 2022. "Developing a Spine Internal Rotation Angle Measurement System Based Machine Learning Using CT Reconstructed X-ray Anteroposterior Image" Mathematics 10, no. 24: 4781. https://doi.org/10.3390/math10244781
APA StyleKang, T. -S., & Yu, S. -M. (2022). Developing a Spine Internal Rotation Angle Measurement System Based Machine Learning Using CT Reconstructed X-ray Anteroposterior Image. Mathematics, 10(24), 4781. https://doi.org/10.3390/math10244781