A Markov Chain Model for Approximating the Run Length Distributions of Poisson EWMA Charts under Linear Drifts
Abstract
:1. Introduction
2. One-Sided Poisson EWMA Chart
3. Calculation of and Approximation Accuracy
3.1. Calculation of Zero-State and Steady-State
3.2. Approximation Accuracy
4. Design of the One-Sided Poisson EWMA Chart
5. A Simulated Example
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woodall, W.H. The Use of Control Charts in Health-Care and Public-Health Surveillance. J. Qual. Technol. 2006, 38, 1–16. [Google Scholar] [CrossRef]
- Rolka, H.; Burkom, H.; Cooper, G.F.; Kulldorff, M.; Madigan, D.; Wong, W.K. Issues in Applied Statistics for Public Health Bioterrorism Surveillance Using Multiple Data Streams: Research Needs. Stat. Med. 2007, 26, 1834–1856. [Google Scholar] [CrossRef]
- Shmueli, G.; Burkom, H.S. Statistical Challenges Facing Early Outbreak Detection in Biosurveillance. Technometrics 2010, 52, 39–51. [Google Scholar] [CrossRef]
- Tsui, K.L.; Chiu, W.; Gierlich, P.; Goldsman, D.; Liu, X.; Maschek, T. A Review of Healthcare, Public Health, and Syndromic Surveillance. Qual. Eng. 2008, 20, 435–450. [Google Scholar] [CrossRef]
- Tsui, K.L.; Wong, Z.; Jiang, W.; Lin, C.J. Recent Research and Development in Temporal and Spatiotemporal Surveillance for Public Health. IEEE Trans. Reliab. 2011, 60, 49–58. [Google Scholar] [CrossRef]
- Tang, H.J.; Elalouf, A.; Levner, E.; Cheng, T.C.E. Efficient computation of evacuation routes on a three-dimensional geometric network. Comput. Ind. Eng. 2014, 76, 231–242. [Google Scholar] [CrossRef]
- Page, E.S. Continuous Inspection Schemes. Biometrika 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Brook, D.; Evans, D.A. An Approach to the Probability Distribution of Run Length. Biometrika 1972, 59, 539–549. [Google Scholar] [CrossRef]
- Lucas, J.M. Counted data CUSUM’s. Technometrics 1985, 27, 129–144. [Google Scholar] [CrossRef]
- Gan, F.F. Monitoring poisson observations using modified exponentially weighted moving average control charts. Commun. Stat. Simul. Comput. 1990, 19, 103–124. [Google Scholar] [CrossRef]
- White, C.H.; Keats, J.B. ARLs and Higher-order Run-length Moments for the Poisson CUSUM. J. Qual. Technol. 1996, 28, 363–369. [Google Scholar] [CrossRef]
- White, C.H.; Keats, J.B.; Stanley, J. Poisson CUSUM Versus c Chart for Defect Data. Qual. Eng. 1997, 9, 673–679. [Google Scholar] [CrossRef]
- Hawkins, D.M.; Olwell, D.H. Cumulative Sum Charts and Charting for Quality Improvement; Springer: Berlin, Germany, 1998. [Google Scholar]
- Chan, L.Y.; Ouyang, J.; Lau, H.Y.K. A Two-stage Cumulative Quantity Control Chart for Monitoring Poisson Processes. J. Qual. Technol. 2007, 39, 203–223. [Google Scholar] [CrossRef]
- Han, S.W.; Tsui, K.L.; Ariyajunya, B.; Kim, S.B. A Comparison of CUSUM, EWMA, and Temporal Scan Statistics for Detection of Increases in Poisson Rates. Qual. Reliab. Eng. Int. 2010, 26, 279–289. [Google Scholar] [CrossRef]
- Ryan, A.G.; Woodall, W.H. Control Charts for Poisson Count Data with Varying Sample Size. J. Qual. 2010, 42, 260–275. [Google Scholar] [CrossRef]
- Aebtarm, S.; Bouguila, N. An Empirical Evaluation of Attribute Control Charts for Monitoring Defects. Expert Syst. Appl. 2011, 38, 7869–7880. [Google Scholar] [CrossRef]
- Mei, Y.J.; Han, S.W.; Tsui, K.L. Early Detection of a Change in Poisson Rate after Accounting for Population Size Effects. Stat. Sin. 2011, 21, 597–624. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Shu, L.J.; Tsui, K.L. Weighted CUSUM Control Charts for Monitoring Poisson Processes with Varying Sample Size. J. Qual. Technol. 2011, 43, 346–362. [Google Scholar] [CrossRef]
- Martz, H.F.; Kvam, P.H. Detecting Trends and Patterns in Reliability Data over Time Using Exponentially Weighted Moving-averages. Reliab. Eng. Syst. Saf. 1996, 51, 201–207. [Google Scholar] [CrossRef]
- Borror, C.M.; Champ, C.W.; Rigdon, S.E. Poisson EWMA control charts. J. Qual. Technol. 1998, 30, 352–361. [Google Scholar] [CrossRef]
- Shu, L.J.; Jiang, W.; Tsui, K.L. A Comparison of Weighted CUSUM Procedures that Account for Monotone Changes in Population Size. Stat. Med. 2011, 30, 725–741. [Google Scholar] [CrossRef]
- Zhao, H.; Shu, L.; Jiang, W.; Tsui, K.L. An adaptive CUSUM chart for monitoring poisson rates with increasing population sizes. Eur. J. Ind. Eng. 2015, 9, 692–715. [Google Scholar] [CrossRef]
- Perry, M.B.; Pignatiello, J.J.; Simpson, J.R. Estimating the Change Point of a Poisson Rate Parameter with a Linear Trend Disturbance. Qual. Reliab. Eng. Int. 2006, 22, 371–384. [Google Scholar] [CrossRef]
- Perry, M.B.; Pignatiello, J.J.; Simpson, J.R. Change Point Estimation for Monotonically Changing Poisson Rates in SPC. Int. J. Prod. Res. 2007, 45, 1791–1813. [Google Scholar] [CrossRef]
- Zhao, H.; Shu, L.; Tsui, K.L. A window-limited generalized likelihood ratio test for monitoring Poisson processes with linear drifts. J. Stat. Comput. Simul. 2015, 85, 2975–2988. [Google Scholar] [CrossRef]
- Shu, L.; Jiang, W.; Wu, Z. Exponentially Weighted Moving Average Control Charts for Monitoring Increases in Poisson Rate. IIE Trans. 2012, 44, 711–723. [Google Scholar] [CrossRef]
- Champ, C.W.; Woodall, W.H.; Mohsen, H.A. A generalized quality control procedure. Stat. Probab. Lett. 1991, 11, 211–218. [Google Scholar] [CrossRef]
- Crowder, S.V.; Hamilton, M. Average run lengths of EWMA controls for monitoring a process standard deviation. J. Qual. Technol. 1992, 24, 44–50. [Google Scholar] [CrossRef]
- Gan, F.F. Designs of one- and two-sided exponential EWMA charts. J. Qual. Technol. 1998, 30, 55–69. [Google Scholar] [CrossRef]
- Quesenberry, C.P. SPC Q charts for start-up processes and short and long runs. J. Qual. Technol. 1991, 23, 213–224. [Google Scholar] [CrossRef]
- Quesenberry, C.P. SPC Q charts for a binomial parameter: Short and long runs. J. Qual. Technol. 1991, 23, 239–246. [Google Scholar] [CrossRef]
- Quesenberry, C.P. SPC Q charts for a Poisson parameter λ: Short and long runs. J. Qual. Technol. 1991, 23, 296–303. [Google Scholar] [CrossRef]
- Shu, L.; Jiang, W.; Wu, S. A one-sided EWMA control chart for monitoring process means. Commun. Stat. Simul. Comput. 2007, 36, 901–920. [Google Scholar] [CrossRef]
- Shu, L.; Jiang, W. A new EWMA chart for monitoring process dispersion. J. Qual. Technol. 2008, 40, 319–331. [Google Scholar] [CrossRef]
- Steiner, S.H. EWMA control charts with time-varying control limits and fast initial response. J. Qual. Technol. 1999, 31, 75–86. [Google Scholar] [CrossRef]
- Lucas, J.M.; Saccucci, M.S. Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics 1990, 32, 1–12. [Google Scholar] [CrossRef]
Methods | ||||
---|---|---|---|---|
Monte Carlo | Markov Chain | |||
m = 100 | m = 200 | m = 300 | ||
0.001 | 132.10 ± 0.47 | 131.59 | 132.13 | 132.02 |
0.010 | 55.65 ± 0.20 | 55.51 | 55.64 | 55.62 |
0.020 | 39.81 ± 0.14 | 39.72 | 39.80 | 39.79 |
0.050 | 25.02 ± 0.09 | 25.00 | 25.04 | 25.03 |
0.100 | 17.53 ± 0.06 | 17.52 | 17.55 | 17.55 |
0.200 | 12.31 ± 0.04 | 12.31 | 12.32 | 12.32 |
0.500 | 7.75 ± 0.03 | 7.75 | 7.75 | 7.75 |
1.000 | 5.47 ± 0.02 | 5.47 | 5.47 | 5.47 |
Methods | ||||
---|---|---|---|---|
Monte Carlo | Markov Chain | |||
m = 100 | m = 200 | m = 300 | ||
0.001 | 125.11 ± 0.33 | 125.64 | 125.75 | 125.63 |
0.010 | 52.80 ± 0.10 | 52.82 | 52.84 | 52.81 |
0.020 | 37.64 ± 0.06 | 37.67 | 37.68 | 37.67 |
0.050 | 23.42 ± 0.03 | 23.49 | 23.5 | 23.49 |
0.100 | 16.31 ± 0.02 | 16.3 | 16.3 | 16.3 |
0.200 | 11.28 ± 0.01 | 11.29 | 11.3 | 11.3 |
0.500 | 6.97 ± 0.007 | 6.97 | 6.97 | 6.97 |
1.000 | 4.86 ± 0.005 | 4.86 | 4.86 | 4.86 |
4 | 8 | 12 | 16 | |
---|---|---|---|---|
0.01 | ||||
(0.04, 2.109) | (0.04, 2.094) | (0.03, 1.969) | (0.02, 1.777) | |
55.41 | 64.8 | 70.75 | 75.1 | |
0.02 | ||||
(0.05, 2.207) | (0.04, 2.094) | (0.04, 2.094) | (0.05, 2.172) | |
39.81 | 47.04 | 51.91 | 55.49 | |
0.03 | ||||
(0.07, 2.344) | (0.05, 2.184) | (0.05, 2.176) | (0.05, 2.172) | |
32.41 | 38.54 | 42.65 | 45.69 | |
0.04 | ||||
(0.07, 2.344) | (0.06, 2.262) | (0.06, 2.250) | (0.05, 2.172) | |
27.9 | 33.32 | 36.92 | 39.65 | |
0.05 | ||||
(0.09, 2.441) | (0.06, 2.262) | (0.07, 2.305) | (0.06, 2.250) | |
24.8 | 29.7 | 32.93 | 35.43 | |
0.06 | ||||
(0.09, 2.441) | (0.08, 2.371) | (0.07, 2.305) | (0.06, 2.250) | |
22.49 | 26.96 | 29.94 | 32.27 | |
0.07 | ||||
(0.10, 2.480) | (0.08, 2.371) | (0.07, 2.305) | (0.06, 2.250) | |
20.68 | 24.84 | 27.62 | 29.79 | |
0.08 | ||||
(0.10, 2.480) | (0.09, 2.406) | (0.09, 2.398) | (0.08, 2.346) | |
19.23 | 23.11 | 25.73 | 27.76 | |
0.09 | ||||
(0.12, 2.551) | (0.09, 2.406) | (0.09, 2.398) | (0.08, 2.346) | |
18.02 | 21.69 | 24.14 | 26.07 | |
0.10 | ||||
(0.12, 2.551) | (0.11, 2.480) | (0.09, 2.398) | (0.08, 2.346) | |
17 | 20.48 | 22.81 | 24.64 | |
0.11 | ||||
(0.12, 2.551) | (0.12, 2.512) | (0.09, 2.398) | (0.09, 2.391) | |
16.13 | 19.43 | 21.66 | 23.41 | |
0.12 | ||||
(0.12, 2.551) | (0.12, 2.512) | (0.11, 2.466) | (0.09, 2.391) | |
15.38 | 18.52 | 20.65 | 22.33 | |
0.13 | ||||
(0.15, 2.633) | (0.12, 2.512) | (0.11, 2.466) | (0.10, 2.430) | |
14.7 | 17.71 | 19.76 | 21.38 | |
0.14 | ||||
(0.16, 2.653) | (0.12, 2.512) | (0.11, 2.466) | (0.11, 2.453) | |
14.1 | 17 | 18.97 | 20.52 | |
0.15 | ||||
(0.16, 2.653) | (0.12, 2.512) | (0.11, 2.466) | (0.11, 2.453) | |
13.56 | 16.36 | 18.26 | 19.75 | |
0.16 | ||||
(0.16, 2.653) | (0.12, 2.512) | (0.12, 2.492) | (0.11, 2.453) | |
13.08 | 15.79 | 17.62 | 19.06 | |
0.17 | ||||
(0.16, 2.653) | (0.14, 2.555) | (0.12, 2.492) | (0.11, 2.453) | |
12.64 | 15.26 | 17.04 | 18.43 | |
0.18 | ||||
(0.16, 2.653) | (0.14, 2.555) | (0.12, 2.492) | (0.11, 2.453) | |
12.24 | 14.78 | 16.51 | 17.86 | |
0.19 | ||||
(0.16, 2.653) | (0.14, 2.555) | (0.12, 2.492) | (0.12, 2.484) | |
11.87 | 14.33 | 16.02 | 17.33 | |
0.20 | ||||
(0.18, 2.695) | (0.15, 2.584) | (0.12, 2.492) | (0.13, 2.508) | |
11.53 | 13.93 | 15.57 | 16.84 |
4 | 8 | 12 | 16 | |
---|---|---|---|---|
0.01 | ||||
(0.03, 2.447) | (0.03, 2.434) | (0.02, 2.258) | (0.02, 2.252) | |
70.14 | 84.01 | 93 | 100.01 | |
0.02 | ||||
(0.04, 2.568) | (0.04, 2.541) | (0.03, 2.428) | (0.03, 2.418) | |
48.31 | 58.21 | 64.85 | 69.88 | |
0.03 | ||||
(0.05, 2.652) | (0.04, 2.541) | (0.04, 2.531) | (0.04, 2.526) | |
38.61 | 46.64 | 52.06 | 56.28 | |
0.04 | ||||
(0.06, 2.721) | (0.05, 2.627) | (0.05, 2.613) | (0.04, 2.526) | |
32.84 | 39.74 | 44.44 | 48.07 | |
0.05 | ||||
(0.07, 2.785) | (0.06, 2.689) | (0.05, 2.613) | (0.05, 2.605) | |
28.93 | 35.05 | 39.23 | 42.48 | |
0.06 | ||||
(0.08, 2.824) | (0.07, 2.748) | (0.06, 2.672) | (0.06, 2.666) | |
26.07 | 31.61 | 35.38 | 38.34 | |
0.07 | ||||
(0.09, 2.873) | (0.07, 2.748) | (0.06, 2.672) | (0.06, 2.666) | |
23.85 | 28.95 | 32.43 | 35.13 | |
0.08 | ||||
(0.09, 2.873) | (0.08, 2.787) | (0.07, 2.726) | (0.06, 2.666) | |
22.09 | 26.81 | 30.07 | 32.58 | |
0.09 | ||||
(0.10, 2.906) | (0.08, 2.787) | (0.08, 2.766) | (0.07, 2.715) | |
20.64 | 25.06 | 28.09 | 30.46 | |
0.10 | ||||
(0.11, 2.938) | (0.09, 2.827) | (0.08, 2.766) | (0.07, 2.715) | |
19.42 | 23.58 | 26.43 | 28.68 | |
0.11 | ||||
(0.11, 2.938) | (0.10, 2.863) | (0.08, 2.766) | (0.08, 2.762) | |
18.37 | 22.32 | 25.02 | 27.15 | |
0.12 | ||||
(0.11, 2.938) | (0.10, 2.863) | (0.09, 2.804) | (0.08, 2.762) | |
17.47 | 21.21 | 23.79 | 25.82 | |
0.13 | ||||
(0.13, 2.993) | (0.10, 2.863) | (0.10, 2.834) | (0.08, 2.762) | |
16.67 | 20.25 | 22.71 | 24.66 | |
0.14 | ||||
(0.13, 2.993) | (0.10, 2.863) | (0.10, 2.834) | (0.09, 2.795) | |
15.96 | 19.39 | 21.75 | 23.62 | |
0.15 | ||||
(0.14, 3.017) | (0.11, 2.887) | (0.10, 2.834) | (0.10, 2.828) | |
15.33 | 18.63 | 20.89 | 22.69 | |
0.16 | ||||
(0.14, 3.017) | (0.13, 2.936) | (0.10, 2.834) | (0.10, 2.828) | |
14.76 | 17.93 | 20.12 | 21.84 | |
0.17 | ||||
(0.14, 3.017) | (0.13, 2.936) | (0.11, 2.866) | (0.10, 2.828) | |
14.24 | 17.3 | 19.42 | 21.08 | |
0.18 | ||||
(0.15, 3.041) | (0.13, 2.936) | (0.11, 2.866) | (0.10, 2.828) | |
13.77 | 16.72 | 18.78 | 20.39 | |
0.19 | ||||
(0.15, 3.041) | (0.13, 2.936) | (0.12, 2.893) | (0.11, 2.853) | |
13.34 | 16.2 | 18.19 | 19.75 | |
0.20 | ||||
(0.15, 3.041) | (0.13, 2.936) | (0.12, 2.893) | (0.11, 2.853) | |
12.95 | 15.71 | 17.65 | 19.17 |
4 | 8 | 12 | 16 | |
---|---|---|---|---|
0.01 | ||||
(0.03, 2.674) | (0.02, 2.489) | (0.02, 2.479) | (0.02, 2.470) | |
76.75 | 92.54 | 103.11 | 111.35 | |
0.02 | ||||
(0.04, 2.783) | (0.03, 2.646) | (0.03, 2.636) | (0.03, 2.631) | |
52.19 | 63.16 | 70.63 | 76.47 | |
0.03 | ||||
(0.05, 2.857) | (0.04, 2.751) | (0.04, 2.736) | (0.04, 2.729) | |
41.35 | 50.3 | 56.29 | 61.01 | |
0.04 | ||||
(0.06, 2.924) | (0.05, 2.826) | (0.05, 2.814) | (0.04, 2.729) | |
35.03 | 42.6 | 47.79 | 51.78 | |
0.05 | ||||
(0.07, 2.980) | (0.06, 2.887) | (0.05, 2.814) | (0.05, 2.803) | |
30.78 | 37.45 | 42 | 45.58 | |
0.06 | ||||
(0.07, 2.980) | (0.06, 2.887) | (0.06, 2.873) | (0.05, 2.803) | |
27.68 | 33.68 | 37.81 | 41.02 | |
0.07 | ||||
(0.10, 3.098) | (0.07, 2.939) | (0.06, 2.873) | (0.06, 2.862) | |
25.26 | 30.78 | 34.56 | 37.53 | |
0.08 | ||||
(0.10, 3.098) | (0.07, 2.939) | (0.07, 2.920) | (0.06, 2.862) | |
23.33 | 28.47 | 31.98 | 34.71 | |
0.09 | ||||
(0.10, 3.098) | (0.08, 2.981) | (0.07, 2.920) | (0.07, 2.909) | |
21.75 | 26.56 | 29.84 | 32.41 | |
0.10 | ||||
(0.10, 3.098) | (0.08, 2.981) | (0.08, 2.959) | (0.07, 2.909) | |
20.43 | 24.96 | 28.05 | 30.46 | |
0.11 | ||||
(0.10, 3.098) | (0.09, 3.018) | (0.08, 2.959) | (0.07, 2.909) | |
19.32 | 23.6 | 26.51 | 28.81 | |
0.12 | ||||
(0.10, 3.098) | (0.09, 3.018) | (0.08, 2.959) | (0.08, 2.949) | |
18.36 | 22.42 | 25.19 | 27.36 | |
0.13 | ||||
(0.10, 3.098) | (0.09, 3.018) | (0.09, 2.994) | (0.08, 2.949) | |
17.52 | 21.39 | 24.02 | 26.1 | |
0.14 | ||||
(0.10, 3.098) | (0.11, 3.075) | (0.09, 2.994) | (0.08, 2.949) | |
16.79 | 20.47 | 22.99 | 24.98 | |
0.15 | ||||
(0.13, 3.189) | (0.11, 3.075) | (0.09, 2.994) | (0.09, 2.982) | |
16.12 | 19.64 | 22.07 | 23.99 | |
0.16 | ||||
(0.13, 3.189) | (0.11, 3.075) | (0.10, 3.025) | (0.09, 2.982) | |
15.51 | 18.9 | 21.24 | 23.08 | |
0.17 | ||||
(0.13, 3.189) | (0.11, 3.075) | (0.10, 3.025) | (0.09, 2.982) | |
14.96 | 18.23 | 20.49 | 22.27 | |
0.18 | ||||
(0.13, 3.189) | (0.12, 3.103) | (0.11, 3.050) | (0.09, 2.982) | |
14.46 | 17.62 | 19.8 | 21.53 | |
0.19 | ||||
(0.15, 3.235) | (0.12, 3.103) | (0.11, 3.050) | (0.09, 2.982) | |
14 | 17.06 | 19.17 | 20.86 | |
0.20 | ||||
(0.15, 3.235) | (0.13, 3.126) | (0.11, 3.050) | (0.11, 3.035) | |
13.58 | 16.55 | 18.59 | 20.24 |
4 | 8 | 12 | 16 | |
---|---|---|---|---|
0.01 | ||||
(0.03, 2.763) | (0.02, 2.590) | (0.02, 2.581) | (0.02, 2.579) | |
79.69 | 96.31 | 107.57 | 116.37 | |
0.02 | ||||
(0.04, 2.875) | (0.03, 2.741) | (0.03, 2.731) | (0.03, 2.725) | |
53.78 | 65.31 | 73.17 | 79.35 | |
0.03 | ||||
(0.05, 2.951) | (0.04, 2.844) | (0.04, 2.838) | (0.03, 2.725) | |
42.57 | 51.81 | 58.08 | 63.05 | |
0.04 | ||||
(0.06, 3.025) | (0.05, 2.929) | (0.04, 2.838) | (0.04, 2.825) | |
36.03 | 43.82 | 49.2 | 53.42 | |
0.05 | ||||
(0.07, 3.074) | (0.05, 2.929) | (0.05, 2.906) | (0.05, 2.895) | |
31.62 | 38.48 | 43.23 | 46.97 | |
0.06 | ||||
(0.08, 3.122) | (0.07, 3.029) | (0.05, 2.906) | (0.05, 2.895) | |
28.39 | 34.64 | 38.87 | 42.21 | |
0.07 | ||||
(0.08, 3.122) | (0.07, 3.029) | (0.06, 2.961) | (0.05, 2.895) | |
25.9 | 31.6 | 35.5 | 38.59 | |
0.08 | ||||
(0.08, 3.122) | (0.07, 3.029) | (0.06, 2.961) | (0.06, 2.947) | |
23.94 | 29.2 | 32.83 | 35.67 | |
0.09 | ||||
(0.09, 3.161) | (0.08, 3.071) | (0.07, 3.010) | (0.06, 2.947) | |
22.34 | 27.24 | 30.61 | 33.28 | |
0.10 | ||||
(0.10, 3.198) | (0.10, 3.129) | (0.08, 3.042) | (0.07, 2.994) | |
20.98 | 25.57 | 28.74 | 31.27 | |
0.11 | ||||
(0.10, 3.198) | (0.10, 3.129) | (0.08, 3.042) | (0.07, 2.994) | |
19.83 | 24.13 | 27.14 | 29.55 | |
0.12 | ||||
(0.10, 3.198) | (0.10, 3.129) | (0.08, 3.042) | (0.08, 3.033) | |
18.83 | 22.9 | 25.77 | 28.07 | |
0.13 | ||||
(0.11, 3.224) | (0.10, 3.129) | (0.08, 3.042) | (0.08, 3.033) | |
17.96 | 21.82 | 24.58 | 26.76 | |
0.14 | ||||
(0.11, 3.224) | (0.10, 3.129) | (0.08, 3.042) | (0.08, 3.033) | |
17.18 | 20.87 | 23.53 | 25.6 | |
0.15 | ||||
(0.12, 3.252) | (0.10, 3.129) | (0.08, 3.042) | (0.09, 3.066) | |
16.49 | 20.03 | 22.59 | 24.57 | |
0.16 | ||||
(0.14, 3.302) | (0.10, 3.129) | (0.10, 3.110) | (0.10, 3.098) | |
15.86 | 19.28 | 21.74 | 23.63 | |
0.17 | ||||
(0.14, 3.302) | (0.10, 3.129) | (0.10, 3.110) | (0.10, 3.098) | |
15.29 | 18.6 | 20.96 | 22.78 | |
0.18 | ||||
(0.14, 3.302) | (0.10, 3.129) | (0.10, 3.110) | (0.10, 3.098) | |
14.77 | 17.98 | 20.26 | 22.01 | |
0.19 | ||||
(0.14, 3.302) | (0.10, 3.129) | (0.10, 3.110) | (0.10, 3.098) | |
14.3 | 17.42 | 19.61 | 21.3 | |
0.20 | ||||
(0.14, 3.302) | (0.10, 3.129) | (0.11, 3.138) | (0.10, 3.098) | |
13.87 | 16.9 | 19.02 | 20.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Tang, H.; Pang, C.; Jiang, H. A Markov Chain Model for Approximating the Run Length Distributions of Poisson EWMA Charts under Linear Drifts. Mathematics 2022, 10, 4786. https://doi.org/10.3390/math10244786
Zhao H, Tang H, Pang C, Jiang H. A Markov Chain Model for Approximating the Run Length Distributions of Poisson EWMA Charts under Linear Drifts. Mathematics. 2022; 10(24):4786. https://doi.org/10.3390/math10244786
Chicago/Turabian StyleZhao, Honghao, Huajun Tang, Chuan Pang, and Huimin Jiang. 2022. "A Markov Chain Model for Approximating the Run Length Distributions of Poisson EWMA Charts under Linear Drifts" Mathematics 10, no. 24: 4786. https://doi.org/10.3390/math10244786
APA StyleZhao, H., Tang, H., Pang, C., & Jiang, H. (2022). A Markov Chain Model for Approximating the Run Length Distributions of Poisson EWMA Charts under Linear Drifts. Mathematics, 10(24), 4786. https://doi.org/10.3390/math10244786