Biometric Template Protection for Dynamic Touch Gestures Based on Fuzzy Commitment Scheme and Deep Learning
Abstract
:1. Introduction
- Employing a learning-based approach for feature extraction in a touch authentication system.
- Appling FCS to secure a touch-gesture template and store helper data rather than the touch-gesture template. To the best of our knowledge, this is the first work to apply FCS to secure touch gestures in a touch authentication system and use deep learning (DL) to extract touch features from raw data.
2. Background on Biometric Template Protection
3. Related Works
4. The Proposed Template Protection of Touch-Based Gestures
4.1. Feature Extraction Stage
Touch Authentication Models
4.2. Feature Selection Stage
Algorithm 1 Calculate the Variance of the ith Component. |
\\ input: number of users, number of templates num_template, touch template, inter-class mean \\ output: variance of each component in the template 1 var = 0 2 variance = 0 3 For u in len(users) do: 4 var = 0 5 For t in range (num_template) do: 6 For n in range () do: 7 var1 = abs((u)) ^2 8 var = var + var1 9 variance = var/(num_template-1) 10 = variance 11 return |
Algorithm 2 Calculate the Reliability of the ith Component in User Template . |
\\ input: number of templates num_template, number of components in each template num, touch template, inter-class mean, intra-class mean, and variance of each component in the template for each user \\ output: reliable bit of each component in the template for all users ()
|
Algorithm 3 Binarize the Feature Vector. |
\\ input: number of users, number of templates num_template, number of components in each template num_t, touch template, inter-class mean . \\ output: Binary feature vector 1 = 2 For u in len(users) do: 3 For t in range(num_template) do: 4 For i in range(num_t) do: 5 IF (<=) then: 6 = 0 7 Else: 8 = 1 9 return |
4.3. Fuzzy Commitment Scheme Stage
Algorithm 4 Commit the binary_enroll_feature of the user. |
\\ input: Binary enrollment features, length of codewordn, length of messagek, error capabilityt \\ output: secured touch template, hash of message hash(m) 1 BCHEncode = BCH(n,k,t) \\Create a BCH object from BCH library 2 m = random (k) \\Generate random message with length k 3 IF length() > n then: 4 Error; 5 Else 6 C = BCHEncode (m) 7 = C XOR 8 Hash(m) = sha256(m) 9 return hash(m), |
Algorithm 5 De-commit the user using their binary authentication feature. |
\\ input: binary authentication features , secured touch template, the hash of message hash(m) \\ output: verify: Boolean 1 C′ = XOR 2 m′ = BCHdecode(C′) 3 hash(m′) = sha256(m’) 4 IF hash(m′) == hash(m) then: 5 verify = True 6 Else 7 verify = False 8 return verify |
5. Experiments and Results
5.1. Touch Datasets
5.2. Dataset Preparation
5.3. Evaluation Metric
5.3.1. Evaluation Metrics of Touch Authentication System
- Confusion Matrix: This matrix summarizes the prediction results in a classification problem. The confusion matrix is presented in a table with four different combinations of predicted and actual values (Figure 2) [37]:
- ○
- True Positives (TP): The number of cases with correct positive predictions.
- ○
- True Negatives (TN): The number of cases with correct negative predictions.
- ○
- False Positives (FP): The number of cases with incorrect positive predictions.
- ○
- False Negatives (FN): The number of cases with correct negative predictions.
- False Acceptance Ratio (FAR): This metric measures the security of the biometric system and is calculated by Equation (8):
- False Rejection Ratio (FRR): This represents the part of correct samples that are incorrectly rejected and is calculated using Equation (9) [10]:
- Equal Error Rate: This metric is achieved when FAR and FRR are equal. However, if more than one values in two rates are equal, we find the mean EER [38].
- Accuracy: This metric is calculated as in Equation (10):
5.3.2. Evaluation Metrics of Template Security of Touch Gesture
- Accuracy:
- ○
- FAR: This metric is obtained from an imposter test in which the system falsely accepts an imposter. We consider the user to be authenticated as the genuine user and all other users as imposters. When the system accepts the imposter user rather than the genuine user at authentication, the FAR will increase [15].
- ○
- FRR: This measure is obtained from a genuine test in which the system falsely rejects a genuine user. The genuine test is conducted by considering the user who will be authenticated as the genuine user and all other users as imposters. When the system rejects the genuine user rather than an imposter user at authentication, the FRR will increase [15].
- ○
- The cryptographic key size k (bits): The key size depends on the error-correction technique BCH and the error-correction capability (t). The performance of the proposed system is evaluated using FAR/FRR with different key lengths (k) and error-correction capabilities (t) [15].
- Security:Security analysis of the proposed system, considering different attacks scenarios such as FAR attack, hash inversion, using helper data, and randomness of the key [15].
5.4. Feature Extraction Stage Experiments and Results
5.5. Template Protection Experimental Results
5.5.1. The Effect of Increasing the Numbers of Enrollment Samples
5.5.2. The Effect of Increasing the Size of Feature Length to n = 255 and n = 511
5.5.3. The Effect of Splitting the Samples Based on Session and Stroke Type
5.5.4. Comparison with Other Works
5.5.5. Security Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goubaru, Y.; Yamazaki, Y.; Miyazaki, T.; Ohkit, T. A Consideration on a Common Template-based Biometric Cryptosystem Using On-line Signatures. In Proceedings of the IEEE 3rd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 7–10 October 2014. [Google Scholar]
- Jindal, A.K.; Chalamala, S.; Jami, S.K. Face Template Protection using Deep Convolutional Neural Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Zainon, N.A.F.M.; Razak, S.A. Region of Interest Extraction for Biometric Cryptosystem. In Proceedings of the IEEE Conference on Applications, Information and Network Security (AINS), Langkawi, Malaysia, 21–22 November 2018. [Google Scholar]
- Lim, M.-H.; Teoh, A.B.J.; Kim, J. Biometric Feature-Type Transformation: Making templates compatible for secret protection. IEEE Signal Processing Mag. 2015, 32, 77–87. [Google Scholar] [CrossRef]
- Peethala, M.B.; Kulkarni, S. Integrating Biometric Cryptosystem with Steganography for Authentication. In Proceedings of the 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Pune, India, 19–21 December 2016. [Google Scholar]
- Rane, S. Standardization of Biometric Template Protection. IEEE MultiMedia 2014, 21, 94–99. [Google Scholar] [CrossRef]
- Al-Assam, H.; Jassim, S. Security evaluation of biometric keys. Comput. Secur. 2012, 31, 151–163. [Google Scholar] [CrossRef]
- Jegede, A.; Udzir, N.I.; Abdullah, A.; Mahmod, R. State of the Art in Biometric Key Binding and Key Generation Schemes. Int. J. Commun. Netw. Inf. Secur. (IJCNIS) 2017, 9, 333–345. [Google Scholar]
- Rathgeb, C.; Uhl, A.; Wild, P. Iris-Biometrics: From Segmentation to Template Security; Springer: New York, NY, USA, 2013; Volume 95. [Google Scholar]
- Vasavi, K.; Latha, Y.M. RSA Cryptography based Multi-Modal Biometric Identification System for High-Security Application. Int. J. Intell. Eng. Syst. 2019, 12, 10–22. [Google Scholar] [CrossRef]
- Maček, N.; Đorđević, B.; Gavrilović, J.; Lalović, K. An Approach to Robust Biometric Key Generation System Design. Acta Polytech. Hung. 2015, 12, 43–60. [Google Scholar]
- Baghel, V.S.; Prakash, S.; Agrawal, I. An enhanced fuzzy vault to secure the fingerprint templates. Multimed. Tools Appl. 2021, 80, 33055–33073. [Google Scholar] [CrossRef]
- Panchal, G.; Samanta, D. Comparable Features and Same Cryptography Key Generation using Biometric Fingerprint Image. In Proceedings of the 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2016. [Google Scholar]
- Hoang, T.; Choi, D.; Nguyen, T. Gait authentication on mobile phone using biometric cryptosystem and fuzzy commitment scheme. Int. J. Inf. Secur. 2015, 14, 549–560. [Google Scholar] [CrossRef]
- Elrefaei, L.A.; Al-Mohammadi, A.M. Machine vision gait-based biometric cryptosystem using a fuzzy commitment scheme. J. King Saud Univ. Comput. Inf. Sci. 2019; in Press. [Google Scholar] [CrossRef]
- Nagakrishnan, R.; Revathi, A. A robust cryptosystem to enhance the security in speech based person authentication. Multimed. Tools Appl. 2020, 79, 20795–20819. [Google Scholar] [CrossRef]
- Zhi, J.; Ooi, S.Y.; Teoh, A.B.J. Learning-Based Index-of-Maximum Hashing for Touch-Stroke Template Protection. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019. [Google Scholar]
- Estrela, P.M.; Albuquerque, R.D.O.; Amaral, D.M.; Giozza, W.F.; Júnior, R.T.D.S. A Framework for Continuous Authentication Based on Touch Dynamics Biometrics for Mobile Banking Applications. Sensors 2021, 21, 4212. [Google Scholar] [CrossRef]
- Debard, Q.; Wolf, C.; Canu, S.; Arne, J. Learning to recognize touch gestures: Recurrent vs. convolutional features and dynamic sampling. In Proceedings of the 13th IEEE Conference on Automatic Face and Gesture Recognition (FG2018), Xi’an, China, 15–19 May 2018. [Google Scholar]
- Trainys, T.; Venčkauskas, A. Encryption Keys Generation Based on Bio-Cryptography Finger Vein Method; CEUR Workshop Proceedings: Tenerife, Spain, 2018; Volume 2145, pp. 106–111. [Google Scholar]
- Alariki, A.A.; Manaf, A.A.; Mousavi, S.M. Features Extraction Scheme for Behavioural Biometric Authentication in Touchscreen Mobile Devices. Int. J. Appl. Eng. Res. 2016, 11, 9331–9344. [Google Scholar]
- Arslan, B.; Yorulmaz, E.; Akca, B.; Sagiroglu, S. Security Perspective of Biometric Recognition and Machine Learning Techniques. In Proceedings of the 15th IEEE International Conference on Machine Learning and Applications, Anaheim, CA, USA, 18–20 December 2017. [Google Scholar]
- Jin, Z.; Teoh, A.B.J.; Goi, B.-M.; Tay, Y.-H. Biometric cryptosystems: A new biometric key binding and its implementation for fingerprint minutiae-based representation. Pattern Recognit. 2016, 56, 50–62. [Google Scholar] [CrossRef]
- Sujitha, V.; Chitra, D. A Novel Technique for Multi Biometric Cryptosystem Using Fuzzy Vault. J. Med. Syst. 2019, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Farah, M.A.B.; Guesmi, R.; Kachouri, A.; Samet, M. A new design of cryptosystem based on S-box and chaotic permutation. Multimed. Tools Appl. 2020, 79, 19129–19150. [Google Scholar] [CrossRef]
- Priya, S.S.; Karthigaikumar, P.; Mangai, S. Mixed random 128 bit key using finger print features and binding key for AES algorithm. In Proceedings of the International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29 November 2015. [Google Scholar]
- Kirchgasser, S.; Kauba, C.; Lai, Y.-L.; Zhe, J.; Uhl, A. Finger Vein Template Protection Based on Alignment-Robust Feature Description and Index-of-Maximum Hashing. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 337–349. [Google Scholar] [CrossRef]
- Frank, M.; Biedert, R.; Ma, E.; Martinovic, I.; Song, D. Touchalytics. 2013. Available online: http://www.mariofrank.net/touchalytics/index.html (accessed on 1 December 2020).
- Sudhakar, T.; Gavrilova, M. Cancelable Biometrics Using Deep Learning as a Cloud Service. IEEE Access 2020, 8, 112932–112943. [Google Scholar] [CrossRef]
- Talreja, V.; Valenti, M.C.; Nasrabadi, N.M. Multibiometric Secure System Based on Deep Learning. In Proceedings of the IEEE Global Conference on Signal and Information Processing (globalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 298–302. [Google Scholar]
- Juels, A.; Wattenberg, M. A fuzzy commitment scheme. In Proceedings of the CCS99: Sixth ACM Conference on Computer and Communication Security, Singapore, 1–4 November 1999. [Google Scholar]
- Krzemiński, M.; Hernando, J. End-to-end User Recognition using Touchscreen Biometrics. arXiv 2020, arXiv:2006.05388. [Google Scholar]
- Bajaber, A.; Fadel, M.; Elrefaei, L. Evaluation of Deep Learning Models for Person Authentication Based on Touch Gesture. Comput. Syst. Sceince Engeneering 2022, 42, 465–481. [Google Scholar] [CrossRef]
- Kelkboom, E.; Breebaart, J.; Kevenaar, T.; Buhan, I.; Veldhuis, R.N.J. Preventing the Decodability Attack based Cross-matching in a Fuzzy Commitment Scheme. IEEE Trans. Inf. Forensics Secur. 2011, 6, 107–121. [Google Scholar] [CrossRef]
- Antal, M.; Bokor, Z.; Szabó, L.Z. BioIdent—Touchstroke Based Biometrics on Android Platform. Available online: https://ms.sapientia.ro/~manyi/bioident.html (accessed on 1 January 2020).
- Teh, P.S.; Zhang, N.; Tan, S.-Y.; Shi, Q.; Khoh, W.H.; Nawaz, R. Strengthen user authentication on mobile devices by using user’s touch dynamics pattern. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4019–4039. [Google Scholar] [CrossRef] [Green Version]
- Narkhede, S. Understanding Confusion Matrix. Towards Data Science. 2018. Available online: https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 (accessed on 1 January 2020).
- Sun, L.; Cao, B.; Wang, J.; Srisa-an, W.; Yu, P.; Leow, A.D.; Checkoway, S. KOLLECTOR: Detecting Fraudulent Activities on Mobile Devices Using Deep Learning. IEEE Trans. Mob. Comput. 2020, 20, 1465–1476. [Google Scholar] [CrossRef]
- ISO/IEC 24745:2011 Information Technology—Security Techniques—Biometric Information Protection. ISO. 2011. Available online: https://www.iso.org/standard/52946.html (accessed on 1 January 2020).
- BioKeyS III-Final Report; “Study of the Privacy and Accuracy of the Fuzzy Commitment Scheme”; Bundesamt für Sicherheit in der Informationstechnik. 2011. Available online: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Biokeys/BioKeyS_III-Final_Report.pdf?__blob=publicationFile&v=1 (accessed on 1 January 2020).
- Peng, J.; Yang, B.; Gupta, B.B.; El-Latif, A.A.A. A biometric cryptosystem scheme based on random projection and neural network. Soft Comput. 2021, 25, 7657–7670. [Google Scholar] [CrossRef]
Model Name | Layers |
---|---|
CNN-LSTM | CNN layer with filters = 512, and kernel_size = length of column, with activation = ‘relu’ and padding = same |
Max pooling layer with pooling size = number of columns | |
LSTM layer (700 neurons) | |
softMax layer | |
CNN-GRU | CNN layer with filters = 512, and kernel_size = length of column, with activation = ‘relu’ and padding = same |
Max pooling layer with pooling size = number of columns | |
GRU layer | |
softMax layer |
Dataset Name | Touch Type | Data Type | Touch Data | Number of Samples | Session | Number of Users | Devices |
---|---|---|---|---|---|---|---|
Touchalytics [28] | Stroke | Raw data | time, action, phone orian, X,Y coordaniates, Pressure, area_covered, Finger_orian (8 types of data related to touch) | 912,133 samples | 7 sessions 4 Wikipedia articles for vertical stroke and 3 Image comparison game for horizontal stroke | 41 | 5 Devices 2 Nexus 1, Nexus S, Samsung Galaxy S, and Droid Incredible. |
BioIdent [35] | Stroke | Raw data | time, action, phone orian, X,Y coordaniates, Pressure, Finger_oriantation | 231,371 samples | - | 71 | 8 different mobile devices, both tablets and phones |
Three Enrollment Samples | Eight Enrollment Samples | |||||
---|---|---|---|---|---|---|
n | k | t | FAR | FRR | FAR | FRR |
127 | 120 | 1 | 0.0000 | 0.9512 | 0.0000 | 0.9756 |
113 | 2 | 0.0000 | 0.9512 | 0.0000 | 0.9573 | |
106 | 3 | 0.0000 | 0.9350 | 0.0000 | 0.9400 | |
99 | 4 | 0.0000 | 0.8943 | 0.0000 | 0.9207 | |
85 | 5 | 0.0000 | 0.8699 | 0.0000 | 0.8994 | |
78 | 6 | 0.0000 | 0.8618 | 0.0005 | 0.8628 | |
71 | 7 | 0.0000 | 0.8049 | 0.0010 | 0.8303 | |
64 | 9 | 0.0006 | 0.6992 | 0.0017 | 0.7297 | |
57 | 10 | 0.0018 | 0.6748 | 0.0030 | 0.6921 | |
50 | 11 | 0.0026 | 0.5935 | 0.0055 | 0.6321 | |
43 | 13 | 0.0083 | 0.4878 | 0.0082 | 0.5305 | |
36 | 14 | 0.0118 | 0.4228 | 0.0124 | 0.4807 | |
29 | 15 | 0.0159 | 0.3740 | 0.0163 | 0.4339 | |
22 | 21 | 0.0856 | 0.2276 | 0.1070 | 0.2073 | |
15 | 22 | 0.1112 | 0.1870 | 0.1391 | 0.1697 | |
12 | 23 | 0.1472 | 0.1626 | 0.1753 | 0.1565 | |
10 | 24 | 0.1864 | 0.1382 | 0.2147 | 0.1352 | |
8 | 25 | 0.2297 | 0.1057 | 0.2608 | 0.1108 |
n | k | t | FAR | FRR | n | k | t | FAR | FRR |
---|---|---|---|---|---|---|---|---|---|
255 | 247 | 1 | 0.0000 | 0.9837 | 255 | 99 | 22 | 0.0053 | 0.5854 |
239 | 2 | 0.0000 | 0.9512 | 91 | 23 | 0.0063 | 0.5528 | ||
231 | 3 | 0.0000 | 0.9431 | 87 | 25 | 0.0108 | 0.5041 | ||
223 | 4 | 0.0000 | 0.9431 | 79 | 26 | 0.0140 | 0.4715 | ||
215 | 5 | 0.0000 | 0.9350 | 71 | 27 | 0.0185 | 0.4390 | ||
207 | 6 | 0.0000 | 0.9350 | 63 | 29 | 0.0317 | 0.3740 | ||
199 | 7 | 0.0000 | 0.9187 | 55 | 30 | 0.0398 | 0.3496 | ||
191 | 8 | 0.0000 | 0.9106 | 47 | 31 | 0.0496 | 0.3415 | ||
187 | 9 | 0.0000 | 0.9024 | 45 | 42 | 0.3112 | 0.1138 | ||
179 | 10 | 0.0000 | 0.8943 | 37 | 43 | 0.3504 | 0.0894 | ||
171 | 10 | 0.0000 | 0.8943 | 29 | 45 | 0.4238 | 0.0732 | ||
163 | 11 | 0.0000 | 0.8780 | 21 | 47 | 0.5047 | 0.0488 | ||
155 | 12 | 0.0000 | 0.8374 | 13 | 55 | 0.7990 | 0.0000 | ||
147 | 13 | 0.0000 | 0.8049 | 9 | 59 | 0.8945 | 0.0000 | ||
139 | 14 | 0.0002 | 0.7805 | 511 | 502 | 1 | 0.0000 | 0.9756 | |
131 | 15 | 0.0004 | 0.7642 | 493 | 2 | 0.0000 | 0.9675 | ||
123 | 18 | 0.0020 | 0.7317 | 484 | 3 | 0.0000 | 0.9593 | ||
115 | 19 | 0.0022 | 0.6992 | 475 | 4 | 0.0000 | 0.9593 | ||
107 | 21 | 0.0037 | 0.6179 | 466 | 5 | 0.0000 | 0.9431 |
n | k | t | FAR | FRR | n | k | t | FAR | FRR |
---|---|---|---|---|---|---|---|---|---|
255 | 247 | 1 | 0.0000 | 0.9906 | 255 | 99 | 23 | 0.0003 | 0.5399 |
239 | 2 | 0.0000 | 0.9906 | 91 | 25 | 0.0004 | 0.5023 | ||
231 | 3 | 0.0000 | 0.9765 | 87 | 26 | 0.0004 | 0.4742 | ||
223 | 4 | 0.0000 | 0.9718 | 79 | 27 | 0.0005 | 0.4507 | ||
215 | 5 | 0.0000 | 0.9484 | 71 | 29 | 0.0007 | 0.4366 | ||
207 | 6 | 0.0000 | 0.8967 | 63 | 30 | 0.0007 | 0.3991 | ||
199 | 7 | 0.0000 | 0.8732 | 55 | 31 | 0.0009 | 0.3803 | ||
191 | 8 | 0.0000 | 0.8592 | 47 | 42 | 0.0073 | 0.2019 | ||
187 | 9 | 0.0001 | 0.8357 | 45 | 43 | 0.0080 | 0.1925 | ||
179 | 10 | 0.0001 | 0.8169 | 37 | 45 | 0.0101 | 0.1643 | ||
171 | 11 | 0.0001 | 0.7887 | 29 | 47 | 0.0133 | 0.1362 | ||
163 | 12 | 0.0001 | 0.7559 | 21 | 55 | 0.0364 | 0.0657 | ||
155 | 13 | 0.0002 | 0.7371 | 13 | 59 | 0.0634 | 0.0516 | ||
147 | 14 | 0.0002 | 0.7183 | 9 | 63 | 0.1015 | 0.0329 | ||
139 | 15 | 0.0002 | 0.6995 | 511 | 502 | 1 | 0.0000 | 0.9953 | |
131 | 18 | 0.0002 | 0.6479 | 493 | 2 | 0.0000 | 0.9906 | ||
123 | 19 | 0.0003 | 0.6291 | 484 | 3 | 0.0000 | 0.9906 | ||
115 | 21 | 0.0003 | 0.6009 | 475 | 4 | 0.0000 | 0.9812 | ||
107 | 22 | 0.0003 | 0.5681 | 466 | 5 | 0.0000 | 0.9624 |
Reference | Template Protection | Feature Extraction Approach | Key Length | FAR | FRR | EER |
---|---|---|---|---|---|---|
Our work | Without template protection | Learning-based | - | 0.0009 | 0.0975 | 0.0975 |
Our work | FCS | Learning-based | 99 | 0.0053 | 0.5854 | 0.1800 |
[17] (2019) | Non-invertible Cancelable biometric based on IoM hashing | Hand-crafted feature extraction | 30 | - | - | 0.0960 |
Ref. | Biometric | Feature Extraction Algorithm | Template Protection Method | ECC | Dataset | Result |
---|---|---|---|---|---|---|
[29] (2020) | iris/finger vein | CNN | Non-invertible Cancelable biometric | Reed Solomon | IIT-D Database and MMU for iris and FV-USM Dataset | The accuracy is 98% for the IITD dataset, 92% for the MMU dataset, and 99.55% for the FV-USM dataset |
[30] (2017) | Face and iris | CNN | Cancelable biometric and forward error control code | Reed Solomon | Face-CNN Iris-CNN Cassia web face | GAR = 92.5% at symbol size = 5006 |
[2] (2018) | face | CNN | Hybrid approach (transform-based and biometric cryptosystem) | - | CMU-PIE, FEI, and color FERET | EER = 0.15% for k = 25% and multi shots |
Our work | Touch Stroke | CNN-GRU | FCS | BCH | Touchalytics dataset, BioIdent dataset | EER= 0.1800 on Touchalytics dataset EER= 0.0900 on BioIdent dataset |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajaber, A.; Elrefaei, L. Biometric Template Protection for Dynamic Touch Gestures Based on Fuzzy Commitment Scheme and Deep Learning. Mathematics 2022, 10, 362. https://doi.org/10.3390/math10030362
Bajaber A, Elrefaei L. Biometric Template Protection for Dynamic Touch Gestures Based on Fuzzy Commitment Scheme and Deep Learning. Mathematics. 2022; 10(3):362. https://doi.org/10.3390/math10030362
Chicago/Turabian StyleBajaber, Asrar, and Lamiaa Elrefaei. 2022. "Biometric Template Protection for Dynamic Touch Gestures Based on Fuzzy Commitment Scheme and Deep Learning" Mathematics 10, no. 3: 362. https://doi.org/10.3390/math10030362
APA StyleBajaber, A., & Elrefaei, L. (2022). Biometric Template Protection for Dynamic Touch Gestures Based on Fuzzy Commitment Scheme and Deep Learning. Mathematics, 10(3), 362. https://doi.org/10.3390/math10030362