Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks
Abstract
:1. Introduction
- What are the key SSCRs and agility criterion for the EMSC?
- How can the QFD-MCDM framework be used to construct a HoQ model to relate SSCRs and agility criteria and how can the model be applied to the multinational electronics manufacturing industry.
- How does the relationship between SSCRs and agility criteria affect the search for feasible agile solutions to mitigate SSCRs in the EMSC?
- For multinational electronics manufacturers, what are the most important SSCRs that should be mitigated, and which agility criteria should be applied to mitigate the most critical SSCRs in order to achieve a sustainable EMSC?
2. Literature Review
2.1. Sustainable Supply Chain Risk
2.2. Supply Chain Agility
2.3. Integrating Sustainable Risk and Agility for Supply Chain
2.4. Research Gaps and Highlights
- A HoQ model was used to link SSCRs and agility criteria and apply them to the multinational electronics manufacturing industry.
- A HoQ model based on QFD was used to investigate the interdependence of SSCRs and agility criteria, and to determine important agility criteria to eliminate or mitigate major SSCRs.
3. Methodology
3.1. The Proposed QFD-MCDM Framework
3.1.1. Step 1: Screening out Key SSCRs and Agility Criteria Using FDM
3.1.2. Step 2: Calculating the Weights of Key SSCRs Using AHP
3.1.3. Step 3: Obtaining the Correlation Matrix between Key SSCRs Using DEMATEL
3.1.4. Step 4: Obtaining the Correlation of Agility Criteria and the Matrix of the Relationship between SSCRs and Agility Criteria
3.1.5. Step 5: Sorting the Agility Criteria Using GRA
3.2. Fuzzy Delphi Method
- (1)
- If the two triangular fuzzy numbers do not overlap, that is, (), it indicates that there is no consensus on the value of the expert opinion range. Then, of this evaluation factor is the arithmetic mean of and , and it is expressed as .
- (2)
- If the two triangular fuzzy numbers overlap, that is, (), and , is the interval range of optimistic and conservative cognition, and it is given by . is the grey area of fuzzy relationship, and it can be expressed as . Although there is no consensus between the opinions of the experts, in the case of the experts who give the extreme opinions, their opinions do not differ significantly from the opinions of the other experts to cause differences of opinions. of this factor is calculated by the formula.
- (3)
- If the two triangular fuzzy numbers overlap, that is, (), and , it indicates that the expert who gave the opinion corresponding to the extreme value differs too much from the other experts, resulting in divergence of opinion.
3.3. Analytic Hierarchy Process
3.4. DEMATEL
3.5. Grey Relational Analysis
4. Results and Discussions
4.1. Results of Implementing the QFD-MCDM Approach
4.1.1. Step 1: Screening out Key SSCRs and Agility Criteria Using FDM
4.1.2. Step 2: Calculating the Weights of Key SSCRs Using AHP
- The questionnaire data provided by experts were sorted and substituted into Equations (5) and (6) to check whether the answers on each aspect of the questionnaire met the consistency requirement, namely . If the requirement was not met, the answers were discussed with the experts again, and the answers were entered in the questionnaire again. The calculation results of the dimension weight of the AHP expert questionnaire are presented in Table 6.
- According to the calculation steps of the expert questionnaire (1), the data of eight experts can be calculated and sorted to obtain the integrated weight of each expert’s score. The integrated weight value of the eight expert questionnaires can be calculated and averaged to obtain the final AHP weight, as shown in Table 11.
4.1.3. Step 3: Obtaining the Correlation Matrix between Key SSCRs Using DEMATEL
- The defuzzification calculation was performed by substituting the questionnaire data of eight experts into Equations (7)–(10) for data defuzzification and obtaining the influence degree of R1 on the remaining 18 factors as an example. Similarly, the mutual influence degree values among the 19 factors were calculated to obtain the original relational matrix (shown in Table 12). The sum of each row/column of the original relational matrix was obtained, and the maximum value of the sums of the rows/columns was selected for the normalization of the matrix. The maximum value obtained was 41.875.
- Substituting the original relational matrix into Equation (11) yielded . The value of λ was multiplied by the original relational matrix; in other words, the normalized direct relational matrix could be obtained by normalizing the original relational matrix. Equation (12) was used to obtain the comprehensive influence matrix T, which is shown in Table 13.
- The data in Table 14 were obtained by summing each row/column of the comprehensive influence matrix T and adding and subtracting the influence degree of the factors and the influence degree .
4.1.4. Step 4: Obtaining the Correlation of Agility Criteria and the Matrix of the Relationship between SSCRs and Agility Criteria
- Construct the incidence matrix between SSCRs and agility criteria. The aim is to determine the correlation between agility and SSCRs; the numerical values 1, 3 and 9 indicate low correlation, moderate correlation, and high correlation, respectively. Table 15 shows the correlation matrix of defuzzification after the eight questionnaires were collected; the arithmetic mean method was used for defuzzification. The correlation matrix is in the middle of the HoQ.
- Construct the correlation matrix of agility criteria. The aim is to determine interrelationships between agility criteriaon and to express them in numerical terms; 1, 3 and 9 indicate slight correlation, moderate correlation, and absolute correlation, respectively. This matrix is used as the roof of the HoQ. Table 16 shows the correlation matrix of defuzzification of the eight questionnaires after they were collected; the arithmetic mean method was used for defuzzification.
4.1.5. Step 5: Sorting the Agility Criteria Using GRA
- Calculate the integratied weight of key SSCRs. The integrated weight can be obtained by matrix multiplication of the AHP weight in Table 11 (obtained in Step 2) and the total influence matrix T in Table 13 (obtained in Step 3). The results are shown in Table 17, and it is on the far-right side of the HoQ.
- 2.
- Calculate the grey correlation degree. The normalized correlation matrix can be obtained by multiplying the matrices in Table 15 with those in Table 16, and it can be used as the original matrix for grey correlation analysis. Equations (13)–(16) are used to obtain the grey correlation degree of key agility criteria, as shown in Table 18. Table 18 is below the HoQ.
4.2. Implications and Recommendations
5. Conclusions
- The top five SSCRs affecting the EMSC were ‘disruption or delay in the delivery of goods because of inadequate liquidity and poor financial conditions’, ‘information system instability’, ‘credibility and competence of operators and leaders’, ‘long product lead time’ and ‘product safety and quality’.
- The top five agility criteria affecting the EMSC were ‘production and sales capability’, ‘quick decision making/strategic flexibility’, ‘electronic shipment of finished products to control shipment operations’, ‘supplier on-time delivery rates’ and ‘cost minimization’.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Electronic manufacturing supply chain | EMSC |
Sustainable supply chain risk | SSCR |
Supply chain agility | SCA |
Multicriteria decision-making | MCDM |
Quality function deployment | QFD |
Houses of quality | HoQ |
Fuzzy Delphi method | FDM |
Analytic hierarchy process | AHP |
Decision making trial and evaluation laboratory | DEMATEL |
Grey relational analysis | GRA |
Appendix A
Sustainable Supply Chain Risks (SSCRs) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
External environment | Risk of supply and demand changes | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||
Industrial climate index | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||
Exchange rate fluctuations/tax changes | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||
Seasonal adjustment and tidal current fluctuation | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||
Floods, earthquakes, typhoons | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||
Disease | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Political instability | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||
Government regulations, policy supervision and other risks | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||
Environmental degradation and environmental awareness | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Enterprise product supply | Product safety and quality | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||
Production capacity is insufficient | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||
Risk of waste discharge | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Customized design concepts | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Delivery process is damaged or delayed | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Poor traffic regulations | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Impact of natural disasters and accidents on logistic | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||||
The delivery was misdelivered and delayed | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||
Commodity price fluctuation | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Inventories are too low or too high | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||
Lack of warehouse space | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||
The workshop and other production working environment is poor | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Lack of planning and organization | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||||
Long product lead time | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||
Failure to deliver on time, affecting customer expectations | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||||
Suppliers material supply | Cooperation risk, breach of commitment | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||
Failure of key suppliers | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||||
Limited green suppliers | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Supplier capability and reliability | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||
Supplier dependence and production delays | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||
The supplier reassigned the goods for delay | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||
Disruption or delay of goods due to inadequate supply liquidity and poor financial conditions | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||
The company’s market share has decreased | ● | |||||||||||||||||||||||||||||||||||||
Reductions in poor-quality materials have resulted in termination of supply | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||
Risk of material orders in delivery | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Supplier product quality supervision | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||
Single procurement policy | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||
Fluctuation of purchase price | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||
Meet demand and reduce inventory | ● | ● | ||||||||||||||||||||||||||||||||||||
Raw material shortage, availability | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||||
Supplies are out of stock due to interruption of source | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Human resource dimensions | External human attack, error | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||
Insurrection, war terrorism | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||||
Man-made accidents | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||||
The labor dispute led to a strike | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Child labor, forced labor | ● | |||||||||||||||||||||||||||||||||||||
Omit supervision during homework | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Employee’s illegal operation | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||
The staff information was leaked | ● | ● | ||||||||||||||||||||||||||||||||||||
People are not skilled, the operation is wrong | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||
Labour is not being used efficiently | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||
Credibility and competence of operators and leaders | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||||
High level management involvement is low | ● | |||||||||||||||||||||||||||||||||||||
Improper organizational and management skills | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||
Misstaffing | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Inadequate personnel training and guidance | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||
Enterprise interior and equipment aspect | Information equipment failure | ● | ● | ● | ||||||||||||||||||||||||||||||||||
Inadequate information security and leakage | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Information system instability | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Insufficient information method concepts and tools | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||
Availability and accuracy of information | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||||
Risk factors for information transmission | ● | ● | ||||||||||||||||||||||||||||||||||||
IT and information sharing risks | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||
Risk awareness of the enterprise | ● | |||||||||||||||||||||||||||||||||||||
Reasons for delay in delivery due to difficulties in changing equipment to production mode | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||||
Technical change or malfunction of equipment | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||
Improper equipment selection and management | ● | |||||||||||||||||||||||||||||||||||||
Degree of process informatization | ● | |||||||||||||||||||||||||||||||||||||
Production process, technology standard degree | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||||
Inappropriate/unavailable test method | ● | ● | ||||||||||||||||||||||||||||||||||||
Change the IT system and failure | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||
Supply chain accidents, delivery delays and a drop in the company’s reputation | ● | |||||||||||||||||||||||||||||||||||||
Data missing, unable to render part of the information | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||||
The company’s financial processing and control process, management policy errors | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||||||||||
Inadequate ability to predict risks | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||
Changes in Shareholder Structure | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||||||||
Brand reputation is damaged, corporate culture is consistent | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||
Ineffective strategic public relations performance | ● | ● | ● | |||||||||||||||||||||||||||||||||||
Customer relations are not good | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||||||||||||||||
Failure to respond to preferences | ● | |||||||||||||||||||||||||||||||||||||
The bullwhip effect | ● | ● | ||||||||||||||||||||||||||||||||||||
Scholars | 1: Cai et al. (2020) [67]; 2: Syed et al. (2019) [9]; 3: Deng et al. (2019) [61]; 4: Rostamzadeh et al. (2018) [53]; 5: Valanarasu et al. (2018) [68]; 6: Gautam et al. (2018) [69]; 7: Qazi et al. (2018) [70]; 8: Helmi et al. (2017) [71]; 9: Song et al. (2016) [10]; 10: Giannakis et al. (2016) [72]; 11: Dong et al. (2016) [73]; 12: Mangla et al. (2015) [74]; 13: Guertler (2015) [75]; 14: Aqlan et al. (2015) [76]; 15: Lavastre et al. (2014) [77]; 16: Badea et al. (2014) [78]; 17: Zhang and Cheng (2014) [79]; 18: Sentia et al. (2013) [80]; 19: Wang et al. (2012) [81]; 20: Sofyalıoğlu et al. (2012) [82]; 21: Tang et al. (2011) [83]; 22: Isaksson and Seifert (2016) [84]; 23: Dominguez-Bello et al. (2016) [85]; 24: Koblen and Škůrková (2015) [86]; 25: Mohammaddust et al. (2015) [87]; 26: Song et al. (2015) [88]; 27: Ouyang et al. (2015) [89]; 28: Mackelprang and Malhotra. (2015) [90]; 29: Cheng et al. (2015) [91]; 30: Cao et al. (2014) [92]; 31: Alhawari et al. (2012) [93]; 32: Jereb et al. (2012) [94]; 33: Thun and Hoenig (2009) [95]; 34: Wagner and Bode (2008) [96]; 35: Jüttner et al. (2003) [97]; 36: Van Landeghem and Vanmaele (2002) [98]; 37: Christopher and Lee (2001) [99] |
Agility Criteria for Supply Chain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cooperative competition | Integration of supply chain partners | ● | ● | ● | ● | ||||||||||||||||
Work with suppliers to plan purchasing, manufacturing and logistics operations | ● | ● | |||||||||||||||||||
Long-term cooperation and strengthening of trust relationship with partners | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||
Work with partners to develop core competitiveness | ● | ● | |||||||||||||||||||
Leverage the capabilities of your partners | ● | ● | ● | ||||||||||||||||||
Work with partners to improve product quality, social benefits and environmental health and safety | ● | ● | |||||||||||||||||||
Select partners with better performance and basic capabilities/work with agile vendors | ● | ● | ● | ||||||||||||||||||
Actively set up information sharing platform with partners | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||
To jointly promote modular production, can quickly respond to market demand | ● | ● | ● | ||||||||||||||||||
Set up a team joint operation mode of cross-departmental cooperation | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||
Information technology | Information data integration | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||
Data accuracy | ● | ● | |||||||||||||||||||
Using information technology | ● | ● | ● | ● | ● | ● | |||||||||||||||
Electronic shipment of finished products to facilitate control of shipment operations | ● | ● | ● | ||||||||||||||||||
Adopt e-business | ● | ||||||||||||||||||||
Transparent visualization of information in the upper, middle and lower reaches of the supply chain, which can quickly respond to customer needs | ● | ● | |||||||||||||||||||
Enhance the speed and accuracy of order processing | ● | ||||||||||||||||||||
Market supply | Improving market sensitivity/avoiding the game behavior in the case of shortage | ● | ● | ● | ● | ● | |||||||||||||||
Meet changing needs/respond to changing corporate environment and market needs | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||
Forecasting/responding to market demand/forward-looking | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||
Identify threats in the environment | |||||||||||||||||||||
Continuously improve/enhance the competitiveness of the enterprise against the market and environment | ● | ● | ● | ● | |||||||||||||||||
Collect customer and competitor market information to determine relevant strategies | ● | ● | |||||||||||||||||||
Develop future potential customers as new market opportunities | ● | ||||||||||||||||||||
Customer relationship | Reduce delivery time/delivery time control | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||
Rapid new product launch/increase the frequency of new product introduction to market | ● | ● | ● | ● | ● | ● | |||||||||||||||
Improve customer service | ● | ● | ● | ● | ● | ||||||||||||||||
Use order-driven rather than forecast-driven | ● | ● | |||||||||||||||||||
Provide customized products | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||
Quick customer response | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||
Improve delivery reliability | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||
Provide customer satisfaction | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||
Provide customers with high value added products | ● | ||||||||||||||||||||
Design user-friendly/socially compliant products | ● | ● | |||||||||||||||||||
Manufacturing technology capability | Develop flexible production technology | ● | ● | ||||||||||||||||||
Make flexible products/reduce the complexity of the product design process | ● | ● | ● | ● | ● | ● | |||||||||||||||
Set up a virtual enterprise | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||
Reduce facility setup and switching time and increase the production quantity of products | ● | ● | ● | ● | |||||||||||||||||
Raise awareness of technology and information technology | ● | ● | ● | ||||||||||||||||||
Introduce appropriate information technology and incorporate new hardware, software and new products | ● | ● | ● | ● | ● | ● | |||||||||||||||
Shorten manufacturing lead time/shorten lead time quick response/implement synchronous engineering | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||
Shorten the development cycle time/enhance the research and development ability of innovative products/launch frequency of new products | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||
Reduce production time for new products | ● | ● | |||||||||||||||||||
Manufacturing flexibility/manufacturing flexibility/agile manufacturing | ● | ● | ● | ● | |||||||||||||||||
Product greenness/product life cycle | ● | ● | |||||||||||||||||||
Improve logistics capability/purchasing capability/build agile logistics | ● | ● | |||||||||||||||||||
Quality improvement | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||
Organization and team management | Distributed Decision Models | ● | ● | ● | ● | ● | ● | ||||||||||||||
Manage the core competitiveness of the enterprise | ● | ● | ● | ||||||||||||||||||
Continuously cultivate multi-skilled and flexible employees and improve their working ability | ● | ● | ● | ● | ● | ● | |||||||||||||||
Build a culture that can change with The Times | ● | ● | ● | ● | ● | ||||||||||||||||
Developing a knowledge-driven enterprise | ● | ● | ● | ||||||||||||||||||
Process integration | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||
Cost minimization | ● | ||||||||||||||||||||
Establish a reward system | ● | ● | ● | ● | |||||||||||||||||
Reducing uncertainty | ● | ● | |||||||||||||||||||
Enhance brand value | ● | ● | |||||||||||||||||||
Production and sales capability | ● | ● | |||||||||||||||||||
Quick decision/strategic flexibility | ● | ● | |||||||||||||||||||
Scholars | 1: Haq et al. (2020) [120]; 2:Rasi et al. (2019) [121]; 3: Jermsittiparsert et al. (2019) [122]; 4: Mohammadi (2019) [123]; 5: Sˆderberg et al. (2018) [124]; 6: Chan et al. (2017) [125]; 7: Bargshady et al. (2016) [108]; 8: Yoon et al. (2014) [126]; 9: Mishra et al. (2014) [127]; 10: Chakraborty and Mandal (2011) [128]; 11:Wu (2019) [129]; 12: Dastyar et al. (2018) [130]; 13: Shahin et al. (2017) [131]; 14: Sangari et al. (2016) [132]; 15:Yang (2014) [133]; 16: Jakhar et al. (2013) [134]; 17: Saleeshya et al. (2012) [135]; 18: Pandey et al. (2009) [136]; 19: Faisal et al. (2007) [137]; 20: Swafford et al. (2006) [119] |
References
- Wang, M.; Luan, J.; Li, X.; Zhu, X. Sustainable Decisions in a high-tech electronic product supply chain considering environmental effort and social responsibility: A hierarchical bi-level intelligent approach. IAENG Int. J. Appl. Math. 2021, 51, 1–16. [Google Scholar]
- Esfahbodi, A.; Zhang, Y. Sustainable supply chain management in developed vs. emerging economies: Evidence from the UK and China’s manufacturing industry. In Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 537–549. [Google Scholar]
- Rajesh, R.; Ravi, V. Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey–DEMATEL approach. Comput. Ind. Eng. 2015, 87, 126–139. [Google Scholar] [CrossRef]
- Rajesh, R. A grey-layered ANP based decision support model for analyzing strategies of resilience in electronic supply chains. Eng. Appl. Artif. Intell. 2020, 87, 103338. [Google Scholar] [CrossRef]
- Trkman, P.; McCormack, K. Supply chain risk in turbulent environments—A conceptual model for managing supply chain network risk. Int. J. Prod. Econ. 2009, 119, 247–258. [Google Scholar] [CrossRef]
- Svensson, G.; Wagner, B. Implementing and managing economic, social and environmental efforts of business sustainability: Propositions for measurement and structural models. Manag. Environ. Qual. Int. J. 2015, 26, 195–213. [Google Scholar] [CrossRef]
- Carter, C.R.; Liane Easton, P. Sustainable supply chain management: Evolution and future directions. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 46–62. [Google Scholar] [CrossRef]
- Gouda, S.K.; Saranga, H. Sustainable supply chains for supply chain sustainability: Impact of sustainability efforts on supply chain risk. Int. J. Prod. Res. 2018, 56, 5820–5835. [Google Scholar] [CrossRef]
- Syed, M.W.; Li, J.Z.; Junaid, M.; Ye, X.; Ziaullah, M. An empirical examination of sustainable supply chain risk and integration practices: A performance-based evidence from Pakistan. Sustainability 2019, 11, 5334. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Ming, X.; Liu, H.C. Identifying critical risk factors of sustainable supply chain management: A rough strength-relation analysis method. J. Clean. Prod. 2016, 143, 100–115. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R. A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. J. Clean. Prod. 2020, 247, 119586. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Dwivedi, A.; Khan, N.S.; Paul, S.K.; Khan, S.A.; Sultana, R. Analysis of risk factors in sustainable supply chain management in an emerging economy of leather industry. J. Clean. Prod. 2021, 283, 124641. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D.; Dolgui, A. Review of quantitative methods for supply chain resilience analysis. Transp. Res. Part E: Logist. Transp. Rev. 2019, 125, 285–307. [Google Scholar] [CrossRef]
- Um, J.; Han, N. Understanding the relationships between global supply chain risk and supply chain resilience: The role of mitigating strategies. Supply Chain. Manag. Int. J. 2020, 26, 240–255. [Google Scholar] [CrossRef]
- Hsu, C.H.; Chang, A.Y.; Zhang, T.Y.; Lin, W.D.; Liu, W.L. Deploying resilience enablers to mitigate risks in sustainable fashion supply chains. Sustainability 2021, 13, 2943. [Google Scholar] [CrossRef]
- Pellegrino, R.; Costantino, N.; Tauro, D. The value of flexibility in mitigating supply chain transportation risks. Int. J. Prod. Res. 2020, 59, 6252–6269. [Google Scholar] [CrossRef]
- Khan, O.; Greaves, Y.C. Mitigating supply chain risk through improved agility: Lessons from a UK retailer. Int. J. Agil. Syst. Manag. 2008, 3, 263–281. [Google Scholar] [CrossRef]
- Braunscheidel, M.J.; Suresh, N.C. The organizational antecedents of a firm’s supply chain agility for risk mitigation and response. J. Oper. Manag. 2009, 27, 119–140. [Google Scholar] [CrossRef]
- Mishra, S.; Mahapatra, S.S.; Datta, S. Agility evaluation in fuzzy context: Influence of decision-makers’ risk bearing attitude. Benchmarking: Int. J. 2014, 21, 1084–1119. [Google Scholar] [CrossRef]
- Zanjirchi, S.M.; Jalilian, N.; Mirhoseini, A. Risk-agility interactive model: A new look at agility drivers. J. Model. Manag. 2017, 12, 690–711. [Google Scholar] [CrossRef]
- Rasi, R.E.; Hatami, D. Environmental risk and innovation in supply chain: Analysis of influence of supply chain agility. J. Syst. Manag. Sci. 2019, 9, 1–25. [Google Scholar]
- Abeysekara, M.N.P.; Wang, H.; Kuruppuarachchi, D. Antecedent role of risk management culture to drive firm performance and competitive advantage with the mediation effect of agility in resilient supply chains. Int. J. Inf. Bus. Manag. 2019, 11, 10–29. [Google Scholar]
- Arifin, A.Z.; Yanuar; Nuryasman. Exploring the link between supply chain agility, supply chain cost, supply chain responsiveness, global supply chain risk management, and contribution in global manufacturing: An indonesian perspective. Int. J. Supply Chain. Manag. 2018, 7, 353–366. [Google Scholar]
- Jajja, M.S.S.; Chatha, K.A.; Farooq, S. Impact of supply chain risk on agility performance: Mediating role of supply chain integration. Int. J. Prod. Econ. 2018, 205, 118–138. [Google Scholar] [CrossRef]
- Ganguly, A.; Chatterjee, D.; Rao, H.V. Evaluating the risks associated with supply chain agility of an enterprise. Int. J. Bus. Anal. 2017, 4, 15–34. [Google Scholar] [CrossRef]
- Mandal, S.; Dubey, R.K. Role of tourism IT adoption and risk management orientation on tourism agility and resilience: Impact on sustainable tourism supply chain performance. Int. J. Tour. Res. 2020, 22, 1–14. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Nawaz, M.A. The impacts of tourism risk management, IT adoption, agility and resilience on the sustainable tourism supply chain performance of Maldives’ tourism industry. Irasd J. Manag. 2020, 2, 100–108. [Google Scholar] [CrossRef]
- Aziz, K.; Rahman, A.A.; Kamarulzaman, N.H.; Sambasivan, M. The impact of supply chain risk on agility practices: A theoretical review and a critique. Asian J. Bus. Manag. 2015, 3, 1. [Google Scholar]
- Ali, S.M.; Moktadir, M.A.; Kabir, G.; Chakma, J.; Rumi, M.J.U.; Islam, M.T. Framework for evaluating risks in food supply chain: Implications in food wastage reduction. J. Clean. Prod. 2019, 228, 786–800. [Google Scholar]
- Romli, A.; Prickett, P.; Setchi, R.; Soe, S. Integrated eco-design decision-making for sustainable product development. Int. J. Prod. Res. 2015, 53, 549–571. [Google Scholar] [CrossRef]
- Li, M.; Jin, L.; Wang, J. A new MCDM method combining QFD with TOPSIS for knowledge management system selection from the user’s perspective in intuitionistic fuzzy environment. Appl. Soft Comput. 2014, 21, 28–37. [Google Scholar] [CrossRef]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [Google Scholar] [CrossRef]
- Wang, X.; Fang, H.; Song, W. Technical attribute prioritisation in QFD based on cloud model and grey relational analysis. Int. J. Prod. Res. 2020, 58, 5751–5768. [Google Scholar] [CrossRef]
- Wang, H.; Fang, Z.; Wang, D.; Liu, S. An integrated fuzzy QFD and grey decision-making approach for supply chain collaborative quality design of large complex products. Comput. Ind. Eng. 2020, 140, 106212. [Google Scholar] [CrossRef]
- Mahmood, W.H.W.; Azlan, U.A.A. QFD approach in determining the best practices for green supply chain management in composite technology manufacturing industries. Malays. J. Compos. Sci. Manuf. 2020, 1, 45–56. [Google Scholar] [CrossRef]
- Miranbeigi, M.; Moshiri, B.; Rahimi-Kian, A.; Razmi, J. Demand satisfaction in supply chain management system using a full online optimal control method. Int. J. Adv. Manuf. Technol. 2015, 77, 1401–1417. [Google Scholar] [CrossRef]
- Dotoli, M.; Fanti, M.P.; Meloni, C.; Zhou, M.C. A multi-level approach for network design of integrated supply chains. Int. J. Prod. Res. 2005, 43, 4267–4287. [Google Scholar] [CrossRef]
- Wu, N.; Mao, N.; Qian, Y. An approach to partner selection in agile manufacturing. J. Intell. Manuf. 1999, 10, 519–529. [Google Scholar] [CrossRef]
- Dotoli, M.; Fanti, M.P.; Meloni, C.; Zhou, M. Design and optimization of integrated e-supply chain for agile and environmentally conscious manufacturing. IEEE Trans. Syst. Man Cybern. -Part A Syst. Hum. 2006, 36, 62–75. [Google Scholar] [CrossRef]
- Liu, H.C.; Quan, M.Y.; Li, Z.; Wang, Z.L. A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 2019, 486, 254–270. [Google Scholar] [CrossRef]
- Beske, P.; Land, A.; Seuring, S. Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. Int. J. Prod. Econ. 2014, 152, 131–143. [Google Scholar] [CrossRef]
- Ehtesham Rasi, R.; Sohanian, M. A multi-objective optimization model for sustainable supply chain network with using genetic algorithm. J. Model. Manag. 2021, 16, 714–727. [Google Scholar] [CrossRef]
- Chowdhury, H.M.M.; Quaddus, M.A. Supply chain sustainability practices and governance for mitigating sustainability risk and improving market performance: A dynamic capability perspective. J. Clean. Prod. 2020, 278, 123521. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, H.; Zhang, D. A credit risk assessment model based on SVM for small and medium enterprises in supply chain finance. Financ. Innov. 2015, 1, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Weng, X.; Lü, X.; Wu, Y. Research on the credit risk management of small and medium-sized enterprises based on supply chain finance. J. Financ. Account. 2016, 4, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Yang, Y.; Gu, J.; Zhou, Z. Research on the contagion effect of associated credit risk in supply chain based on dual-channel financing mechanism. Environ. Res. 2020, 184, 109356. [Google Scholar] [CrossRef]
- Oliva, F.L. A maturity model for enterprise risk management. Int. J. Prod. Econ. 2016, 173, 66–79. [Google Scholar] [CrossRef]
- Levner, E.; Ptuskin, A. Entropy-based model for the ripple effect: Managing environmental risks in supply chains. Int. J. Prod. Res. 2018, 56, 2539–2551. [Google Scholar] [CrossRef]
- De Oliveira, F.N.; Leiras, A.; Ceryno, P. Environmental risk management in supply chains: A taxonomy, a framework and future research avenues. J. Clean. Prod. 2019, 232, 1257–1271. [Google Scholar] [CrossRef]
- Cunha, L.; Ceryno, P.; Leiras, A. Social supply chain risk management: A taxonomy, a framework and a research agenda. J. Clean. Prod. 2019, 220, 1101–1110. [Google Scholar] [CrossRef]
- Langholtz, M.; Webb, E.; Preston, B.L.; Turhollow, A.; Breuer, N.; Eaton, L.; King, A.W.; Sokhansanj, S.; Nair, S.S.; Downing, M. Climate risk management for the US cellulosic biofuels supply chain. Clim. Risk Manag. 2014, 3, 96–115. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yin, Y.; Yan, S. Research on clean energy power generation-energy storage-energy using virtual enterprise risk assessment based on fuzzy analytic hierarchy process in China. J. Clean. Prod. 2019, 236, 117471. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Ghorabaee, M.K.; Govindan, K.; Esmaeili, A.; Nobar, H.B.K. Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS-CRITIC approach. J. Clean. Prod. 2018, 175, 651–669. [Google Scholar] [CrossRef]
- Boiral, O.; Talbot, D.; Brotherton, M.C. Measuring sustainability risks: A rational myth? Bus. Strategy Environ. 2020, 29, 2557–2571. [Google Scholar] [CrossRef]
- Hallikas, J.; Lintukangas, K.; Kähkönen, A.K. The effects of sustainability practices on the performance of risk management and purchasing. J. Clean. Prod. 2020, 263, 121579. [Google Scholar] [CrossRef]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D.; et al. Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 2021, 67, 121579. [Google Scholar] [CrossRef]
- Sakli, L.; Hennet, J.C.; Mercantini, J.M. An analysis of risks and vulnerabilities in supply networks. IFAC Proc. Vol. 2014, 47, 8933–8938. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.; Xiao, X.; Goh, M.; Zheng, J.; Wen, J. Compound mechanism design of supplier selection based on multi-attribute auction and risk management of supply chain. Comput. Ind. Eng. 2017, 105, 63–75. [Google Scholar] [CrossRef]
- Mavi, R.K.; Goh, M.; Mavi, N.K. Supplier selection with Shannon entropy and fuzzy TOPSIS in the context of supply chain risk management. Procedia-Soc. Behav. Sci. 2016, 235, 216–225. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Liu, G. The risk management of perishable supply chain based on coloured Petri Net modeling. Inf. Processing Agric. 2018, 5, 47–59. [Google Scholar] [CrossRef]
- Deng, X.; Yang, X.; Zhang, Y.; Li, Y.; Lu, Z. Risk propagation mechanisms and risk management strategies for a sustainable perishable products supply chain. Comput. Ind. Eng. 2019, 135, 1175–1187. [Google Scholar] [CrossRef]
- Jiang, X.; Qing, P.; Yang, Y. Risk management of Baijiu sustainable supply chain in China. Financ. Eng. Risk Manag. 2020, 3, 31–44. [Google Scholar]
- Badenhorst-Weiss, J.A.; Naudé, R.T. The challenges behind producing a bottle of wine: Supply chain risks. J. Transp. Supply Chain. Manag. 2020, 14, 1–15. [Google Scholar]
- Mzougui, I.; Carpitella, S.; Certa, A.; El Felsoufi, Z.; Izquierdo, J. Assessing supply chain risks in the automotive industry through a modified MCDM-based FMECA. Processes 2020, 8, 579. [Google Scholar] [CrossRef]
- Auer, V.; Rauch, P. Wood supply chain risks and risk mitigation strategies: A systematic review focusing on the Northern hemisphere. Biomass Bioenergy 2021, 148, 106001. [Google Scholar] [CrossRef]
- Zou, Z.; Farnoosh, A.; Mcnamara, T. Risk analysis in the management of a green supply chain. Strateg. Change 2021, 30, 5–17. [Google Scholar] [CrossRef]
- Cai, X.; Qian, Y.; Bai, Q.; Liu, W. Exploration on the financing risks of enterprise supply chain using Back Propagation neural network. J. Comput. Appl. Math. 2020, 367, 112457. [Google Scholar] [CrossRef]
- Valanarasu, R.; Christy, A. Risk assessment and management in enterprise resource planning by advanced system engineering theory. Int. J. Bus. Intell. Data Min. 2018, 13, 3–14. [Google Scholar] [CrossRef]
- Gautam, A.; Prakash, S.; Soni, U. Supply chain risk management and quality: A case study and analysis of Indian automotive industry. Int. J. Intell. Enterp. 2018, 5, 194–212. [Google Scholar] [CrossRef]
- Qazi, A.; Dickson, A.; Quigley, J.; Gaudenzi, B. Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks. Int. J. Prod. Econ. 2018, 196, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Helmi, M.N.; Masri, M.N. Risk mapping and mitigation design of small and medium enterprises clothing products using supply chain risk management. IOP Conf. Ser. Mater. Sci. Eng. 2017, 277, 012061. [Google Scholar] [CrossRef]
- Giannakis, M.; Papadopoulos, T. Supply chain sustainability: A risk management approach. Int. J. Prod. Econ. 2016, 171, 455–470. [Google Scholar] [CrossRef]
- Dong, Q.; Cooper, O. An orders-of-magnitude AHP supply chain risk assessment framework. Int. J. Prod. Econ. 2016, 182, 144–156. [Google Scholar] [CrossRef]
- Mangla, S.K.; Kumar, P.; Barua, M.K. Prioritizing the responses to manage risks in green supply chain: An Indian plastic manufacturer perspective. Sustain. Prod. Consum. 2015, 1, 67–86. [Google Scholar] [CrossRef]
- Guertler, B.; Spinler, S. When does operational risk cause supply chain enterprises to tip? A simulation of intra-organizational dynamics. Omega 2015, 57, 54–69. [Google Scholar] [CrossRef]
- Aqlan, F.; Lam, S.S. A fuzzy-based integrated framework for supply chain risk assessment. Int. J. Prod. Econ. 2015, 161, 54–63. [Google Scholar] [CrossRef]
- Lavastre, O.; Gunasekaran, A.; Spalanzani, A. Effect of firm characteristics, supplier relationships and techniques used on supply chain risk management (SCRM): An empirical investigation on French industrial firms. Int. J. Prod. Res. 2014, 52, 3381–3403. [Google Scholar] [CrossRef]
- Badea, A.; Prostean, G.; Goncalves, G.; Allaoui, H. Assessing risk factors in collaborative supply chain with the analytic hierarchy process (AHP). Procedia Soc. Behav. Sci. 2014, 124, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, N. Risk modelling of retail supply chain based on fuzzy petri nets. Inf. Technol. J. 2014, 13, 1813. [Google Scholar] [CrossRef] [Green Version]
- Sentia, P.D.; Mukhtar, M.; Shukor, S.A. Supply chain information risk management model in Make-to-Order (MTO). Procedia Technol. 2013, 11, 403–410. [Google Scholar] [CrossRef]
- Wang, X.; Chan, H.K.; Yee, R.W.; Diaz-Rainey, I. A two-stage fuzzy-AHP model for risk assessment of implementing green initiatives in the fashion supply chain. Int. J. Prod. Econ. 2012, 135, 595–606. [Google Scholar] [CrossRef]
- Sofyalıoğlu, Ç.; Kartal, B. The selection of global supply chain risk management strategies by using fuzzy analytical hierarchy process—A case from Turkey. Procedia-Soc. Behav. Sci. 2012, 58, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Tang, O.; Musa, S.N. Identifying risk issues and research advancements in supply chain risk management. Int. J. Prod. Econ. 2011, 133, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, O.H.; Seifert, R.W. Quantifying the bullwhip effect using two-echelon data: A cross-industry empirical investigation. Int. J. Prod. Econ. 2016, 171, 311–320. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; De Jesus-Laboy, K.M.; Shen, N.; Cox, L.M.; Amir, A.; Gonzalez, A.; Bokulich, N.A.; Song, S.J.; Hoashi, M.; Rivera-Vinas, J.I.; et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016, 22, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Koblen, I.; Škůrková, K.L. Selected aspects of the risk in the supply chain in context of the supplier quality management. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2015, 23, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Mohammaddust, F.; Rezapour, S.; Farahani, R.Z.; Mofidfar, M.; Hill, A. Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs. Int. J. Prod. Econ. 2017, 183, 632–653. [Google Scholar] [CrossRef]
- Song, S.; Zuo, Z.; Cao, Y.; Wang, L. Analysis of social risk causes of rail transit construction projects based on DEMATEL-ISM. In ICTE 2015, Proceedings of the Fifth International Conference on Transportation Engineering, Dalian, China, 26–27 September 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 1868–1875. [Google Scholar]
- Ouyang, A.J.; Lv, Y.N.; Zhong, H.L.; Wen, J.H.; Wei, X.H.; Peng, H.W.; Zhou, J.; Liu, L.L. Meta-analysis of digoxin use and risk of mortality in patients with atrial fibrillation. Am. J. Cardiol. 2015, 115, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Mackelprang, A.W.; Malhotra, M.K. The impact of bullwhip on supply chains: Performance pathways, control mechanisms, and managerial levers. J. Oper. Manag. 2015, 36, 15–32. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Nie, X.Y.; Chen, X.M.; Lin, X.X.; Tang, K.; Zeng, W.T.; Mei, W.Y.; Liu, L.J.; Long, M.; Yao, F.J.; et al. The role of macrolide antibiotics in increasing cardiovascular risk. J. Am. Coll. Cardiol. 2015, 66, 2173–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Peng, L.; Li, R.; Chen, Y.; Li, X.; Mo, B.; Li, X. Nutritional risk screening and its clinical significance in hospitalized children. Clin. Nutr. 2014, 33, 432–436. [Google Scholar] [CrossRef]
- Alhawari, S.; Karadsheh, L.; Talet, A.N.; Mansour, E. Knowledge-based risk management framework for information technology project. Int. J. Inf. Manag. 2012, 32, 50–65. [Google Scholar] [CrossRef]
- Jereb, B.; Cvahte, T.; Rosi, B. Mastering supply chain risks. Serb. J. Manag. 2012, 7, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Thun, J.H.; Hoenig, D. An empirical analysis of supply chain risk management in the German automotive industry. Int. J. Prod. Econ. 2011, 131, 242–249. [Google Scholar] [CrossRef]
- Wagner, S.M.; Bode, C. An empirical examination of supply chain performance along several dimensions of risk. J. Bus. Logist. 2008, 29, 307–325. [Google Scholar] [CrossRef]
- Jüttner, U.; Peck, H.; Christopher, M. Supply chain risk management: Outlining an agenda for future research. Int. J. Logist. Res. Appl. 2003, 6, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Van Landeghem, H.; Vanmaele, H. Robust planning: A new paradigm for demand chain planning. J. Oper. Manag. 2002, 20, 769–783. [Google Scholar] [CrossRef]
- Christopher, M.; Lee, H. Supply Chain Confidence. Working Paper, Cranfield School of Management, UK. 2001. Available online: https://husdal.com/2009/12/07/supply-chain-confidence/ (accessed on 6 November 2021).
- Aslam, H.; Khan, A.Q.; Rashid, K.; Rehman, S.U. Achieving supply chain resilience: The role of supply chain ambidexterity and supply chain agility. J. Manuf. Technol. Manag. 2020, 31, 1185–1204. [Google Scholar] [CrossRef]
- Christopher, M.; Lowson, R.; Peck, H. Creating agile supply chains in the fashion industry. Int. J. Retail. Distrib. Manag. 2004, 32, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Sharifi, H. A methodology for achieving agility in manufacturing organisations. Int. J. Oper. Prod. Manag. 2000, 20, 496–513. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Patel, C.; Tirtiroglu, E. Performance measures and metrics in a supply chain environment. Int. J. Oper. Prod. Manag. 2001, 21, 71–87. [Google Scholar] [CrossRef]
- Vinodh, S.; Prasanna, M. Evaluation of agility in supply chains using multi-grade fuzzy approach. Int. J. Prod. Res. 2011, 49, 5263–5276. [Google Scholar] [CrossRef]
- Dehgani, R.; Navimipour, N.J. The impact of information technology and communication systems on the agility of supply chain management systems. Kybernetes 2019, 48, 2217–2236. [Google Scholar] [CrossRef]
- Mandal, S.; Saravanan, D. Exploring the influence of strategic orientations on tourism supply chain agility and resilience: An empirical investigation. Tour. Plan. Dev. 2019, 16, 612–636. [Google Scholar] [CrossRef]
- Roscoe, S.; Eckstein, D.; Blome, C.; Goellner, M. Determining how internal and external process connectivity affect supply chain agility: A life-cycle theory perspective. Prod. Plan. Control. 2020, 31, 78–91. [Google Scholar] [CrossRef]
- Bargshady, G.; Chegeni, A.; Kamranvand, S.; Zahraee, S.M. A relational study of supply chain agility and firms’ performance in the services providers. Int. Rev. Manag. Mark. 2016, 6, 38–42. [Google Scholar]
- Mirghafoori, S.H.; Andalib, D.; Keshavarz, P. Developing green performance through supply chain agility in manufacturing industry: A case study approach. Corp. Soc. Responsib. Environ. Manag. 2017, 24, 368–381. [Google Scholar] [CrossRef]
- Wu, K.J.; Tseng, M.L.; Chiu, A.S.; Lim, M.K. Achieving competitive advantage through supply chain agility under uncertainty: A novel multi-criteria decision-making structure. Int. J. Prod. Econ. 2017, 190, 96–107. [Google Scholar] [CrossRef]
- Tooranloo, H.S.; Alavi, M.; Saghafi, S. Evaluating indicators of the agility of the green supply chain. Compet. Rev. Int. Bus. J. 2018, 28, 541–563. [Google Scholar]
- Irfan, M.; Wang, M.; Akhtar, N. Enabling supply chain agility through process integration and supply flexibility: Evidence from the fashion industry. Asia Pac. J. Mark. Logist. 2019, 32, 519–547. [Google Scholar] [CrossRef]
- Rasyidi, R.A.; Kusumastuti, R.D. Supply chain agility assessment of an Indonesian humanitarian organization. J. Humanit. Logist. Supply Chain. Manag. 2020, 10, 629–652. [Google Scholar] [CrossRef]
- Shukor, A.A.A.; Newaz, M.S.; Rahman, M.K.; Taha, A.Z. Supply chain integration and its impact on supply chain agility and organizational flexibility in manufacturing firms. Int. J. Emerg. Mark. 2020, 16, 1721–1744. [Google Scholar] [CrossRef]
- Rehman, A.U.; Al-Zabidi, A.; AlKahtani, M.; Umer, U.; Usmani, Y.S. Assessment of supply chain agility to foster sustainability: Fuzzy-DSS for a Saudi manufacturing organization. Processes 2020, 8, 577. [Google Scholar] [CrossRef]
- Al-Zabidi, A.; Rehman, A.U.; Alkahtani, M. An approach to assess sustainable supply chain agility for a manufacturing organization. Sustainability 2021, 13, 1752. [Google Scholar] [CrossRef]
- Jindal, A.; Sharma, S.K.; Sangwan, K.S.; Gupta, G. Modelling supply chain agility antecedents using fuzzy DEMATEL. Procedia CIRP 2021, 98, 436–441. [Google Scholar] [CrossRef]
- Aprilia, A.; Laili, F.; Setyowati, P.B.; Waringga, K.F. The effect of supplier innovation on supply chain agility: Evidence from coffee shops in Malang area. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012059. [Google Scholar] [CrossRef]
- Swafford, P.M.; Ghosh, S.; Murthy, N. The antecedents of supply chain agility of a firm: Scale development and model testing. J. Oper. Manag. 2006, 24, 170–188. [Google Scholar] [CrossRef]
- Haq, M.A.; Hameed, I.; Raheem, A. An empirical analysis of behavioral flexibility, relationship integration and strategic flexibility in supply chain agility: Insights from SMEs Sector of Pakistan. South Asian J. Manag. 2020, 14, 104–121. [Google Scholar] [CrossRef] [Green Version]
- Rasi, R.E.; Abbasi, R.; Hatami, D. The effect of supply chain agility based on supplier innovation and environmental uncertainty. Int. J. Supply Oper. Manag. 2019, 6, 94–109. [Google Scholar]
- Jermsittiparsert, K.; Srisawat, S. The role of supply chain visibility in enhancing supply chain agility. Int. J. Innov. Creat. Change 2019, 5, 485–501. [Google Scholar]
- Mohammadi, V., Jr. Identifying Pharmaceutical Supply Chain Agility Factors. Master’s Thesis, Tampere University, Tampere, Finland, 2020. [Google Scholar]
- Söderberg, E.; Järlid, S. Designing a Performance Measurement System for Supply Chain Agility; Lund University: Lund, Sweden, 2018. [Google Scholar]
- Chan, A.T.; Ngai, E.W.; Moon, K.K. The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry. Eur. J. Oper. Res. 2017, 259, 486–499. [Google Scholar] [CrossRef]
- Yoon, T.; Koh, A.R.; Jin, B. The role of market orientation and organizational innovativeness in enhancing the supply chain agility of Korean apparel firms. J. Korean Soc. Cloth. Text. 2014, 38, 718–732. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Datta, S.; Mahapatra, S.S.; Debata, B.R. Alignment of dimensions towards modelling organisational supply chain agility. Int. J. Serv. Oper. Manag. 2014, 17, 88–106. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mandal, S. Revisiting supply chain agility from an IT perspective: An empirical study. IUP J. Supply Chain. Manag. 2011, 8, 21–33. [Google Scholar]
- Wu, Y. IS-enabled supply chain agility. In Achieving Supply Chain Agility; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 11–66. [Google Scholar]
- Dastyar, H.; Mohammadi, A.; Mohamadlou, M.A. Designing a model for supply chain agility (SCA) indexes using interpretive structural modeling (ISM). In Proceedings of the International Conference on Dynamics in Logistics, Bremen, Germany, 20–22 February 2018; Springer: Cham, Switzerland, 2018; pp. 58–66. [Google Scholar]
- Shahin, A.; Khalili, A.; Pourhamidi, M. Proposing a new approach for evaluating supply chain agility by data envelopment analysis with a case study in Pashmineh Kavir factory. Int. J. Serv. Oper. Manag. 2017, 26, 277–293. [Google Scholar] [CrossRef]
- Sangari, M.S.; Razmi, J.; Gunasekaran, A. Critical factors for achieving supply chain agility: Towards a comprehensive taxonomy. Int. J. Ind. Syst. Eng. 2016, 23, 290–310. [Google Scholar] [CrossRef]
- Yang, J. Supply chain agility: Securing performance for Chinese manufacturers. Int. J. Prod. Econ. 2014, 150, 104–113. [Google Scholar] [CrossRef]
- Jakhar, S.K.; Barua, M.K. Supply chain agility for firm’s performance: A study of textile-apparel-retail supply chain network. Int. J. Agil. Syst. Manag. 2013, 6, 215–231. [Google Scholar] [CrossRef]
- Saleeshya, P.G.; Thampi, K.S.; Raghuram, P. A combined AHP and ISM-based model to assess the agility of supply chain—A case study. Int. J. Integr. Supply Manag. 2012, 7, 167–191. [Google Scholar] [CrossRef]
- Pandey, V.; Garg, S. Analysis of interaction among the enablers of agility in supply chain. J. Adv. Manag. Res. 2009, 6, 99–114. [Google Scholar] [CrossRef]
- Faisal, M.N.; Banwet, D.K.; Shankar, R. Supply chain agility: Analysing the enablers. Int. J. Agil. Syst. Manag. 2007, 2, 76–91. [Google Scholar] [CrossRef]
- Katiyar, R.; Meena, P.L.; Barua, M.K.; Tibrewala, R.; Kumar, G. Impact of sustainability and manufacturing practices on supply chain performance: Findings from an emerging economy. Int. J. Prod. Econ. 2018, 197, 303–316. [Google Scholar] [CrossRef]
- Orji, I.J.; Liu, S. A dynamic perspective on the key drivers of innovation-led lean approaches to achieve sustainability in manufacturing supply chain. Int. J. Prod. Econ. 2020, 219, 480–496. [Google Scholar] [CrossRef]
- Rajesh, R. On sustainability, resilience, and the sustainable–resilient supply networks. Sustain. Prod. Consum. 2018, 15, 74–88. [Google Scholar] [CrossRef]
- Rajesh, R. Optimal trade-offs in decision-making for sustainability and resilience in manufacturing supply chains. J. Clean. Prod. 2021, 313, 127596. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, K.J. Complexity reduction of a design problem in QFD using decomposition. J. Intell. Manuf. 2000, 11, 339–354. [Google Scholar] [CrossRef]
- Younesi, M.; Roghanian, E. A framework for sustainable product design: A hybrid fuzzy approach based on quality function deployment for environment. J. Clean. Prod. 2015, 108, 385–394. [Google Scholar] [CrossRef]
- Liu, H.T. Product design and selection using fuzzy QFD and fuzzy MCDM approaches. Appl. Math. Model. 2011, 35, 482–496. [Google Scholar] [CrossRef]
- Wolniak, R. The use of QFD method advantages and limitation. Prod. Eng. Arch. 2018, 18, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Dolgun, L.E.; Köksal, G. Effective use of quality function deployment and Kansei engineering for product planning with sensory customer requirements: A plain yogurt case. Qual. Eng. 2018, 30, 569–582. [Google Scholar] [CrossRef]
- Mahfod, J. QFD-MCDM Integrated for supplier selection in outsourcing of transport. Int. Conf. Manag. Econ. Financ. 2019, 3, 15–17. [Google Scholar] [CrossRef]
- Ozgormus, E.; Senocak, A.; Goren, H.G. An integrated fuzzy QFD-MCDM framework for personnel selection problem. Sci. Iran. 2021, 28, 2972–2986. [Google Scholar] [CrossRef]
- Neira-Rodado, D.; Ortiz-Barrios, M.; la Hoz-Escorcia, D.; Paggetti, C.; Noffrini, L.; Fratea, N. Smart product design process through the implementation of a fuzzy Kano-AHP-DEMATEL-QFD approach. Appl. Sci. 2020, 10, 1792. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ran, Y.; Huang, G.; Xiao, L.; Zhang, G. A new integrated MCDM approach for improving QFD based on DEMATEL and extended MULTIMOORA under uncertainty environment. Appl. Soft Comput. 2021, 105, 107222. [Google Scholar] [CrossRef]
- Erol, I.; Ar, I.M.; Peker, I.; Searcy, C. Alleviating the impact of the Barriers to circular economy adoption through blockchain: An investigation using an integrated MCDM-based QFD with hesitant fuzzy linguistic term sets. Comput. Ind. Eng. 2022, 165, 107962. [Google Scholar] [CrossRef]
- He, L.; Wu, Z.; Xiang, W.; Goh, M.; Xu, Z.; Song, W.; Ming, X.; Wu, X. A novel Kano-QFD-DEMATEL approach to optimise the risk resilience solution for sustainable supply chain. Int. J. Prod. Res. 2021, 59, 1714–1735. [Google Scholar] [CrossRef]
- Guo, J.; Xu, J.; Du, Q.; He, Z. Risk assessment on multimodal transport network based on quality function deployment. Int. J. Intell. Syst. 2021, 36, 1408–1440. [Google Scholar] [CrossRef]
- Hsu, C.H.; Yu, R.Y.; Chang, A.Y.; Chung, W.H.; Liu, W.L. Resilience-Enhancing Solution to Mitigate Risk for Sustainable Supply Chain–An Empirical Study of Elevator Manufacturing. Processes 2021, 9, 596. [Google Scholar] [CrossRef]
- Ishikawa, A.; Amagasa, T.; Tamizawa, G.; Totsuta, R.; Mieno, H. The max–min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 1993, 55, 241–253. [Google Scholar] [CrossRef]
- Chang, P.T.; Huang, L.C.; Lin, H.J. The fuzzy Delphi method via fuzzy statistics and membership function fitting and an application to the human resources. Fuzzy Sets Syst. 2000, 112, 511–520. [Google Scholar] [CrossRef]
- Kuo, Y.F.; Chen, P.C. Constructing performance appraisal indicators for mobility of the service industries using Fuzzy Delphi Method. Expert Syst. Appl. 2008, 35, 1930–1939. [Google Scholar] [CrossRef]
- Rathore, B.; Gupta, R. A fuzzy based hybrid decision-making framework to ex-amine the safety risk factors of healthcare workers during COVID-19 outbreak. J. Decis. Syst. 2021, 1–34. [Google Scholar] [CrossRef]
- Chen, W.K.; Nalluri, V.; Ma, S.; Lin, M.M.; Lin, C.T. An exploration of the critical risk factors in sustainable telecom services: An analysis of Indian telecom industries. Sustainability 2021, 13, 445. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Yusuff, R.M.; Yee, K.P.; Hashmi, M.S.J. A preliminary study on the potential use of the analytical hierarchical process (AHP) to predict advanced manufacturing technology (AMT) implementation. Robot. Comput.-Integr. Manuf. 2001, 17, 421–427. [Google Scholar] [CrossRef]
- Lee, Y.; Kozar, K.A. Investigating the effect of website quality on e-business success: An analytic hierarchy process (AHP) approach. Decis. Support Syst. 2007, 42, 1383–1401. [Google Scholar] [CrossRef]
- Bathrinath, S.; Bhalaji, R.K.A.; Saravanasankar, S. Risk analysis in textile industries using AHP-TOPSIS. Mater. Today Proc. 2021, 45, 1257–1263. [Google Scholar] [CrossRef]
- Tavana, M.; Shaabani, A.; Mansouri Mohammadabadi, S.; Varzgani, N. An integrated fuzzy AHP-fuzzy MULTIMOORA model for supply chain risk-benefit assessment and supplier selection. Int. J. Syst. Sci. Oper. Logist. 2021, 8, 238–261. [Google Scholar] [CrossRef]
- Wu, W.W. Choosing knowledge management strategies by using a combined ANP and DEMATEL approach—ScienceDirect. Expert Syst. Appl. 2008, 35, 828–835. [Google Scholar] [CrossRef]
- Chang, B.; Chang, C.W.; Wu, C.H. Fuzzy DEMATEL method for developing supplier selection criteria. Expert Syst. Appl. 2011, 38, 1850–1858. [Google Scholar] [CrossRef]
- Hsu, C.W.; Kuo, T.C.; Chen, S.H.; Hu, A.H. Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. J. Clean. Prod. 2013, 56, 164–172. [Google Scholar] [CrossRef]
- Li, J.; Xu, K. A combined fuzzy DEMATEL and cloud model approach for risk assessment in process industries to improve system reliability. Qual. Reliab. Eng. Int. 2021, 37, 2110–2133. [Google Scholar] [CrossRef]
- Julong, D. Control problems of grey system. Syst. Control. Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Julong, D. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Yang, C.; Chen, B. Supplier selection using combined analytical hierarchy process and grey relational analysis. J. Manuf. Technol. Manag. 2006, 17, 926–941. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Huang, X.; Sun, J.; Zhao, X. Credit risk assessment of supply chain financing with a grey correlation model: An empirical study on China’s home appliance Industry. Complexity 2021, 2021, 9981019. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Prod. Plan. Control. 2020, 32, 1–14. [Google Scholar] [CrossRef]
- Elluru, S.; Gupta, H.; Kaur, H.; Singh, S.P. Proactive and reactive models for disaster resilient supply chain. Ann. Oper. Res. 2019, 283, 199–224. [Google Scholar] [CrossRef]
- Ankit, A.; Rajesh, R. An empiricalstudy of supply chain frangibility and risk management in Indian automobile industry. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Gupta, R.; Rao, M.; Sharma, T.; Yadav, A.S.; Bhaskaran, R. Research issue on green product design and manufacturing of electronic manufacturing industry. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Nwachukwu, C.; Vu, H.M. Strategic flexibility, strategic leadership and business sustainability nexus. Int. J. Bus. Environ. 2020, 11, 125–143. [Google Scholar] [CrossRef]
- Tembo Silungwe, C.K.; Khatleli, N. An analysis of the allocation of pertinent risks in the Zambian building sector using Pareto analysis. Int. J. Constr. Manag. 2020, 20, 321–334. [Google Scholar] [CrossRef]
- Ocampo, L.; Jumao-as, A.M.; Labrador, J.J.; Rama, A.M. Transforming the means-end chain model of the QFD into interconnected hierarchical network structures for sustainable product design. Int. J. Sustain. Eng. 2021, 14, 552–573. [Google Scholar] [CrossRef]
- Rehman, O.U.; Ali, Y.; Sabir, M. Risk assessment and mitigation for electric power sectors: A developing country’s perspective. Int. J. Crit. Infrastruct. Prot. 2021, 36, 100507. [Google Scholar] [CrossRef]
- Christopher, M.; Peck, H. Building the resilient supply chain. Int. J. Logist. Manag. 2004, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
Assessment Scale | Definition | Instruction |
---|---|---|
1 | Important | Both are of equal importance. |
3 | A little important | As a rule of thumb, one indicator is slightly more important. |
5 | Quite important | As a rule of thumb, one indicator matters. |
7 | Very important | As it turns out, a certain indicator is very important. |
9 | Absolutely important | There is ample evidence that one metric is absolutely important. |
2, 4, 6, 8 | The median of adjacent scales | A value |
(n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.48 |
No. | Sustainable Supply Chain Risks (SSCRs) | |
---|---|---|
R1 | Product safety and quality | 7.884 |
R2 | Staff information was leaked | 7.250 |
R3 | Illegal operation by an employee | 6.643 |
R4 | Inadequate information security and information leakage | 6.536 |
R5 | Information system instability | 6.205 |
R6 | Bullwhip effect | 5.857 |
R7 | Man-made accidents | 5.804 |
R8 | IT and information sharing | 5.750 |
R9 | Disruption or delay in the delivery of goods because of inadequate liquidity and poor financial conditions | 5.661 |
R10 | Credibility and competence of operators and leaders | 5.536 |
R11 | The company’s financial management and control process, poor management policies | 5.536 |
R12 | The company’s market share has decreased | 5.536 |
R13 | Brand reputation is damaged, corporate culture is consistent | 5.438 |
R14 | Reductions in poor-quality materials have resulted in termination of supply | 5.393 |
R15 | Failure to deliver on time, affecting customer expectations | 5.384 |
R16 | Working conditions at production centres are poor | 5.339 |
R17 | Supply chain accidents, delivery delays and a decline in the company’s reputation | 5.268 |
R18 | Data missing, unable to obtain part of the information | 5.196 |
R19 | Long product lead time | 5.134 |
No. | Agility Criteria | |
---|---|---|
A1 | Production and sales capability | 8.125 |
A2 | Improve customer satisfaction | 6.938 |
A3 | Shorten development cycle/enhance product innovation by improving R&D capability/new product launch frequency | 6.875 |
A4 | Establish partnerships with other enterprises/implement win-win cooperation strategies with suppliers | 6.875 |
A5 | Reduce manufacturing lead time/lead time for quick response/synchronous engineering | 6.625 |
A6 | Establish long-term cooperation and trust relationship with partners | 6.563 |
A7 | Quick customer response | 6.438 |
A8 | Accuracy of data | 6.313 |
A9 | Improve customer service | 6.250 |
A10 | Supplier on-time delivery rates | 6.125 |
A11 | Quick decision/strategic flexibility | 5.938 |
A12 | Improve delivery reliability | 5.938 |
A13 | Quality improvement | 5.750 |
A14 | Reduce delivery time, that is, achieve delivery time control | 5.750 |
A15 | Electronic shipment of finished products to control shipment operations | 5.625 |
A16 | Cost minimization | 5.500 |
A17 | Actively build an information sharing platform with partners | 5.313 |
A18 | Enhance brand value | 5.188 |
A19 | Adopt e-business | 5.125 |
A20 | Manage the core competitiveness of the enterprise | 5.063 |
Risk Levels | Sustainable Supply Chain Risks (SSCRs) |
---|---|
RA1: Human resources | R2: Staff information was leaked R3: Illegal operation by an employee R7: Man-made accidents R10: Credibility and competence of operators and leaders |
RA2: Supplier material supply | R9: Disruption or delay in the delivery of goods because of inadequate liquidity and poor financial conditions R12: The company’s market share has decreased R14: Reductions in poor-quality materials have resulted in termination of supply |
RA3: Enterprise product supply | R1: Product safety and quality R15: Failure to deliver on time, affecting customer expectations R16: Working conditions at production centres are poor R19: Long product lead time |
RA4: Enterprise interiors and equipment | R4: Inadequate information security and information leakage R5: Information system instability R6: Bullwhip effect R8: IT and information sharing R11: The company’s financial management and control process, poor management policies R13: Brand reputation is damaged, corporate culture is consistent R17: Supply chain accidents, delivery delays and a decline in the company’s reputation R18: Data missing, unable to render part of the information |
Expert 1 | RA1 | RA2 | RA3 | RA4 | Weight |
---|---|---|---|---|---|
RA1 | 1 | 1/2 | 1 | 1 | 0.2026 |
RA2 | 2 | 1 | 2 | 1 | 0.3407 |
RA3 | 1 | 1/2 | 1 | 1/2 | 0.1703 |
RA4 | 1 | 1 | 2 | 1 | 0.2865 |
λmax = 4.0604; C.I = 0.0201; C.R = 0.0224 |
Expert 1 | R2 | R3 | R7 | R10 | Criteria Weight | Integration Weight |
---|---|---|---|---|---|---|
R2 | 1 | 2 | 1 | 1 | 0.2858 | 0.0579 |
R3 | 1/2 | 1 | 1 | 1 | 0.2166 | 0.0439 |
R7 | 1 | 1 | 1 | 1 | 0.2488 | 0.0504 |
R10 | 1 | 1 | 1 | 1 | 0.2488 | 0.0504 |
λmax = 4.0604; C.I = 0.0201; C.R = 0.0224 |
Expert 1 | R9 | R12 | R14 | Criteria Weight | Integration Weight |
---|---|---|---|---|---|
R9 | 1 | 1/2 | 1/2 | 0.1958 | 0.0667 |
R12 | 2 | 1 | 2 | 0.4934 | 0.1681 |
R14 | 2 | 1/2 | 1 | 0.3108 | 0.1059 |
λmax = 3.0536; C.I = 0.0268; C.R = 0.0462 |
Expert 1 | R1 | R15 | R16 | R19 | Criteria Weight | Integration Weight |
---|---|---|---|---|---|---|
R1 | 1 | 2 | 2 | 1 | 0.3407 | 0.0580 |
R15 | 1/2 | 1 | 2 | 2 | 0.2865 | 0.0488 |
R16 | 1/2 | 1/2 | 1 | 1 | 0.1703 | 0.0290 |
R19 | 1 | 1/2 | 1 | 1 | 0.2025 | 0.0345 |
Λmax = 4.1836; C.I = 0.0612; C.R = 0.0680 |
Expert 1 | R4 | R5 | R6 | R9 | R11 | R13 | R17 | R18 | Criteria Weight | Integration Weight |
---|---|---|---|---|---|---|---|---|---|---|
R4 | 1 | 1 | 3 | 1 | 1/2 | 1/2 | 1 | 1 | 0.1186 | 0.0340 |
R5 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0.1341 | 0.0384 |
R6 | 1/2 | 1/2 | 1 | 1 | 1 | 1/2 | 1/2 | 1/2 | 0.0758 | 0.0217 |
R9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.1230 | 0.0352 |
R11 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.1341 | 0.0384 |
R13 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0.1462 | 0.0419 |
R17 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0.1341 | 0.0384 |
R18 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0.1341 | 0.0384 |
λmax = 8.2209; C.I = 0.0316; C.R = 0.0224 |
No. | Expert 1 | Expert 2 | Expert 3 | Expert 4 | Expert 5 | Expert 6 | Expert 7 | Expert 8 | AHP Weight |
---|---|---|---|---|---|---|---|---|---|
R12 | 0.1681 | 0.1381 | 0.1329 | 0.0968 | 0.1403 | 0.1090 | 0.0920 | 0.1390 | 0.1270 |
R14 | 0.1059 | 0.1381 | 0.1522 | 0.1537 | 0.1113 | 0.0865 | 0.0730 | 0.1103 | 0.1164 |
R1 | 0.0580 | 0.0759 | 0.1027 | 0.0961 | 0.1126 | 0.1289 | 0.1317 | 0.0935 | 0.0999 |
R9 | 0.0667 | 0.0691 | 0.0580 | 0.0405 | 0.0884 | 0.1374 | 0.1160 | 0.0876 | 0.0829 |
R15 | 0.0488 | 0.0577 | 0.0656 | 0.0679 | 0.0720 | 0.0655 | 0.0841 | 0.0661 | 0.0660 |
R2 | 0.0579 | 0.0709 | 0.0584 | 0.0594 | 0.0445 | 0.0370 | 0.0315 | 0.0415 | 0.0501 |
R10 | 0.0504 | 0.0501 | 0.0491 | 0.0465 | 0.0492 | 0.0370 | 0.0375 | 0.0415 | 0.0452 |
R19 | 0.0345 | 0.0408 | 0.0390 | 0.0404 | 0.0428 | 0.0352 | 0.0500 | 0.0393 | 0.0402 |
R13 | 0.0419 | 0.0356 | 0.0356 | 0.0447 | 0.0339 | 0.0390 | 0.0393 | 0.0395 | 0.0387 |
R5 | 0.0384 | 0.0343 | 0.0343 | 0.0410 | 0.0339 | 0.0390 | 0.0393 | 0.0395 | 0.0375 |
R11 | 0.0384 | 0.0326 | 0.0326 | 0.0389 | 0.0322 | 0.0404 | 0.0407 | 0.0375 | 0.0367 |
R16 | 0.0290 | 0.0310 | 0.0353 | 0.0404 | 0.0387 | 0.0310 | 0.0452 | 0.0393 | 0.0362 |
R18 | 0.0384 | 0.0326 | 0.0326 | 0.0389 | 0.0322 | 0.0371 | 0.0373 | 0.0375 | 0.0358 |
R17 | 0.0384 | 0.0326 | 0.0326 | 0.0357 | 0.0296 | 0.0340 | 0.0342 | 0.0344 | 0.0339 |
R3 | 0.0439 | 0.0421 | 0.0348 | 0.0353 | 0.0315 | 0.0262 | 0.0265 | 0.0293 | 0.0337 |
R7 | 0.0504 | 0.0421 | 0.0292 | 0.0319 | 0.0284 | 0.0262 | 0.0315 | 0.0293 | 0.0336 |
R4 | 0.0340 | 0.0289 | 0.0289 | 0.0344 | 0.0311 | 0.0358 | 0.0342 | 0.0395 | 0.0333 |
R8 | 0.0352 | 0.0299 | 0.0299 | 0.0357 | 0.0296 | 0.0340 | 0.0342 | 0.0344 | 0.0329 |
No. | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 0.000 | 0.000 | 0.458 | 0.000 | 0.375 | 0.000 | 1.458 | 0.375 | 0.375 | 3.375 | 0.375 | 0.833 | 3.292 | 4.500 | 2.375 | 0.375 | 3.458 | 0.375 | 2.542 | 24.542 |
R2 | 0.917 | 0.000 | 0.375 | 0.875 | 3.917 | 0.000 | 0.375 | 0.833 | 1.333 | 2.958 | 1.583 | 1.250 | 1.750 | 0.917 | 0.792 | 0.375 | 1.750 | 3.500 | 0.375 | 23.875 |
R3 | 2.917 | 0.375 | 0.000 | 0.458 | 0.500 | 1.333 | 4.167 | 0.375 | 0.000 | 1.042 | 0.375 | 0.375 | 2.208 | 1.208 | 0.542 | 0.500 | 0.417 | 1.375 | 0.792 | 18.958 |
R4 | 2.958 | 0.833 | 0.000 | 0.000 | 0.458 | 0.792 | 0.375 | 0.875 | 0.000 | 1.042 | 0.375 | 0.875 | 3.000 | 0.417 | 0.375 | 0.000 | 0.417 | 3.125 | 0.833 | 16.750 |
R5 | 0.458 | 0.375 | 0.000 | 2.167 | 0.000 | 0.417 | 0.000 | 2.958 | 2.417 | 0.458 | 2.958 | 4.083 | 4.125 | 0.917 | 0.000 | 0.375 | 0.417 | 4.042 | 3.458 | 29.625 |
R6 | 0.375 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.417 | 1.000 | 0.375 | 1.000 | 0.375 | 0.000 | 0.458 | 0.000 | 2.500 | 0.000 | 2.042 | 0.417 | 2.000 | 10.958 |
R7 | 0.417 | 0.375 | 0.375 | 0.375 | 0.833 | 0.000 | 0.000 | 1.208 | 0.417 | 0.375 | 0.375 | 0.375 | 0.375 | 0.417 | 0.375 | 0.458 | 0.417 | 0.000 | 0.375 | 7.542 |
R8 | 2.458 | 0.000 | 0.000 | 4.167 | 0.375 | 0.375 | 0.000 | 0.000 | 0.000 | 0.000 | 0.958 | 0.000 | 0.000 | 0.429 | 0.000 | 0.000 | 0.875 | 1.333 | 0.417 | 11.387 |
R9 | 0.958 | 1.375 | 0.417 | 0.000 | 0.417 | 0.417 | 0.792 | 0.000 | 0.000 | 2.542 | 4.167 | 4.125 | 3.500 | 0.875 | 2.417 | 0.417 | 0.917 | 0.375 | 4.625 | 28.333 |
R10 | 0.875 | 3.167 | 0.375 | 1.417 | 0.000 | 0.000 | 1.833 | 0.458 | 4.083 | 0.000 | 4.000 | 2.958 | 3.500 | 0.375 | 0.000 | 0.375 | 1.417 | 0.000 | 2.958 | 27.792 |
R11 | 0.375 | 0.000 | 0.375 | 0.000 | 0.000 | 0.417 | 0.000 | 0.000 | 1.500 | 1.458 | 0.000 | 1.458 | 0.417 | 0.375 | 0.000 | 0.000 | 0.375 | 0.000 | 0.000 | 6.750 |
R12 | 0.375 | 0.833 | 0.417 | 0.417 | 0.000 | 0.417 | 0.417 | 0.000 | 3.417 | 4.542 | 1.042 | 0.000 | 3.917 | 0.417 | 0.375 | 0.000 | 0.375 | 0.000 | 0.375 | 17.333 |
R13 | 0.833 | 0.458 | 0.000 | 0.917 | 0.000 | 0.000 | 0.000 | 0.000 | 2.500 | 4.167 | 4.000 | 5.000 | 0.000 | 1.417 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 19.292 |
R14 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.417 | 0.000 | 0.375 | 0.000 | 3.500 | 4.125 | 4.583 | 4.583 | 0.000 | 1.208 | 0.000 | 0.000 | 0.000 | 0.000 | 18.792 |
R15 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.417 | 0.375 | 1.167 | 3.958 | 3.708 | 2.458 | 4.417 | 0.375 | 0.000 | 0.000 | 0.833 | 0.375 | 4.625 | 22.708 |
R16 | 1.500 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.917 | 0.000 | 0.375 | 0.000 | 0.000 | 0.375 | 0.875 | 0.375 | 0.375 | 0.000 | 0.000 | 0.417 | 0.000 | 5.708 |
R17 | 0.000 | 0.000 | 0.458 | 0.000 | 0.000 | 0.417 | 0.375 | 0.000 | 0.500 | 1.042 | 0.000 | 0.458 | 2.958 | 0.417 | 2.083 | 0.000 | 0.000 | 0.000 | 1.875 | 10.583 |
R18 | 3.083 | 0.000 | 0.375 | 0.375 | 0.375 | 0.792 | 0.000 | 2.417 | 0.000 | 0.375 | 0.417 | 0.792 | 0.000 | 0.375 | 0.417 | 0.000 | 0.417 | 0.000 | 0.375 | 10.583 |
R19 | 0.000 | 0.000 | 0.000 | 0.375 | 0.000 | 2.375 | 0.458 | 0.000 | 3.042 | 4.125 | 4.167 | 2.375 | 2.500 | 0.000 | 5.000 | 0.000 | 3.042 | 0.000 | 0.000 | 27.458 |
Sum | 18.500 | 7.792 | 4.125 | 11.542 | 7.250 | 8.167 | 12.000 | 11.250 | 21.500 | 35.958 | 33.000 | 32.375 | 41.875 | 13.804 | 18.833 | 2.875 | 17.167 | 15.333 | 25.625 |
No. | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 0.014 | 0.017 | 0.016 | 0.013 | 0.013 | 0.011 | 0.049 | 0.017 | 0.054 | 0.144 | 0.076 | 0.083 | 0.144 | 0.122 | 0.083 | 0.012 | 0.102 | 0.015 | 0.095 |
R2 | 0.045 | 0.016 | 0.015 | 0.039 | 0.098 | 0.011 | 0.022 | 0.037 | 0.072 | 0.119 | 0.091 | 0.085 | 0.100 | 0.040 | 0.039 | 0.013 | 0.062 | 0.101 | 0.047 |
R3 | 0.083 | 0.018 | 0.005 | 0.021 | 0.018 | 0.038 | 0.109 | 0.020 | 0.025 | 0.064 | 0.044 | 0.044 | 0.090 | 0.046 | 0.032 | 0.015 | 0.029 | 0.040 | 0.042 |
R4 | 0.086 | 0.029 | 0.004 | 0.011 | 0.016 | 0.025 | 0.018 | 0.031 | 0.026 | 0.065 | 0.044 | 0.056 | 0.106 | 0.028 | 0.026 | 0.002 | 0.029 | 0.082 | 0.042 |
R5 | 0.040 | 0.025 | 0.007 | 0.071 | 0.007 | 0.026 | 0.012 | 0.082 | 0.104 | 0.082 | 0.132 | 0.156 | 0.158 | 0.041 | 0.030 | 0.012 | 0.036 | 0.109 | 0.114 |
R6 | 0.016 | 0.006 | 0.002 | 0.007 | 0.002 | 0.006 | 0.016 | 0.027 | 0.028 | 0.051 | 0.037 | 0.023 | 0.040 | 0.007 | 0.075 | 0.001 | 0.061 | 0.013 | 0.068 |
R7 | 0.017 | 0.013 | 0.011 | 0.016 | 0.022 | 0.003 | 0.004 | 0.032 | 0.021 | 0.025 | 0.025 | 0.025 | 0.027 | 0.016 | 0.016 | 0.012 | 0.017 | 0.006 | 0.020 |
R8 | 0.072 | 0.005 | 0.002 | 0.103 | 0.012 | 0.015 | 0.006 | 0.007 | 0.011 | 0.023 | 0.038 | 0.018 | 0.027 | 0.022 | 0.012 | 0.001 | 0.033 | 0.042 | 0.024 |
R9 | 0.040 | 0.051 | 0.017 | 0.014 | 0.017 | 0.024 | 0.035 | 0.008 | 0.059 | 0.139 | 0.169 | 0.162 | 0.153 | 0.040 | 0.090 | 0.013 | 0.051 | 0.019 | 0.147 |
R10 | 0.041 | 0.092 | 0.017 | 0.047 | 0.013 | 0.013 | 0.058 | 0.019 | 0.144 | 0.073 | 0.157 | 0.132 | 0.146 | 0.030 | 0.032 | 0.013 | 0.060 | 0.016 | 0.106 |
R11 | 0.014 | 0.007 | 0.011 | 0.004 | 0.002 | 0.013 | 0.006 | 0.002 | 0.050 | 0.053 | 0.019 | 0.052 | 0.031 | 0.015 | 0.008 | 0.001 | 0.016 | 0.002 | 0.013 |
R12 | 0.024 | 0.039 | 0.015 | 0.021 | 0.006 | 0.016 | 0.023 | 0.006 | 0.118 | 0.153 | 0.078 | 0.052 | 0.139 | 0.025 | 0.027 | 0.004 | 0.027 | 0.008 | 0.042 |
R13 | 0.034 | 0.030 | 0.006 | 0.032 | 0.005 | 0.007 | 0.013 | 0.005 | 0.100 | 0.149 | 0.141 | 0.162 | 0.055 | 0.047 | 0.017 | 0.003 | 0.018 | 0.007 | 0.030 |
R14 | 0.012 | 0.017 | 0.005 | 0.011 | 0.003 | 0.015 | 0.010 | 0.013 | 0.044 | 0.133 | 0.142 | 0.153 | 0.151 | 0.013 | 0.039 | 0.002 | 0.014 | 0.004 | 0.023 |
R15 | 0.015 | 0.019 | 0.006 | 0.014 | 0.004 | 0.013 | 0.023 | 0.014 | 0.080 | 0.156 | 0.150 | 0.116 | 0.158 | 0.023 | 0.028 | 0.003 | 0.044 | 0.014 | 0.139 |
R16 | 0.040 | 0.003 | 0.013 | 0.002 | 0.002 | 0.002 | 0.026 | 0.003 | 0.017 | 0.015 | 0.012 | 0.021 | 0.035 | 0.016 | 0.015 | 0.001 | 0.006 | 0.012 | 0.008 |
R17 | 0.007 | 0.008 | 0.013 | 0.006 | 0.002 | 0.016 | 0.016 | 0.003 | 0.035 | 0.058 | 0.034 | 0.042 | 0.098 | 0.018 | 0.063 | 0.001 | 0.011 | 0.003 | 0.063 |
R18 | 0.082 | 0.005 | 0.011 | 0.018 | 0.011 | 0.023 | 0.007 | 0.062 | 0.013 | 0.033 | 0.028 | 0.035 | 0.025 | 0.022 | 0.022 | 0.002 | 0.024 | 0.006 | 0.025 |
R19 | 0.016 | 0.021 | 0.007 | 0.021 | 0.004 | 0.066 | 0.027 | 0.007 | 0.123 | 0.165 | 0.165 | 0.118 | 0.129 | 0.016 | 0.145 | 0.003 | 0.096 | 0.007 | 0.052 |
No. | ||||
---|---|---|---|---|
R1 | 1.0806 | 0.6976 | 1.7781 | 0.3830 |
R2 | 1.0510 | 0.4196 | 1.4706 | 0.6313 |
R3 | 0.7800 | 0.1840 | 0.9640 | 0.5960 |
R4 | 0.7244 | 0.4701 | 1.1945 | 0.2543 |
R5 | 1.2443 | 0.2548 | 1.4991 | 0.9895 |
R6 | 0.4847 | 0.3432 | 0.8279 | 0.1415 |
R7 | 0.3288 | 0.4807 | 0.8095 | −0.1518 |
R8 | 0.4752 | 0.3951 | 0.8703 | 0.0800 |
R9 | 1.2494 | 1.1235 | 2.3729 | 0.1258 |
R10 | 1.2093 | 1.7019 | 2.9112 | −0.4927 |
R11 | 0.3183 | 1.5793 | 1.8976 | −1.2609 |
R12 | 0.8213 | 1.5348 | 2.3561 | −0.7135 |
R13 | 0.8601 | 1.8129 | 2.6730 | −0.9527 |
R14 | 0.8037 | 0.5877 | 1.3914 | 0.2160 |
R15 | 1.0187 | 0.7982 | 1.8169 | 0.2205 |
R16 | 0.2489 | 0.1148 | 0.3637 | 0.1341 |
R17 | 0.4958 | 0.7348 | 1.2306 | −0.2390 |
R18 | 0.4560 | 0.5076 | 0.9635 | −0.0516 |
R19 | 1.1904 | 1.1002 | 2.2906 | 0.0902 |
No. | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 | A18 | A19 | A20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | 9 | 9 | 1.5 | 1 | 1.5 | 1.75 | 1 | 1.5 | 4.5 | 1 | 1 | 2.25 | 1.75 | 1 | 1 | 1.5 | 1 | 4.5 | 1 | 1.5 |
R2 | 1 | 1 | 1.5 | 6 | 2.5 | 1.5 | 1 | 3 | 1 | 1 | 1 | 1.75 | 2.25 | 1.75 | 1 | 1.5 | 1.75 | 1.75 | 1 | 1 |
R3 | 5.25 | 5.25 | 1 | 1 | 1 | 1 | 1.75 | 1.75 | 1.75 | 1 | 1 | 1.75 | 1.75 | 1 | 1 | 1.5 | 1 | 1.5 | 1 | 1 |
R4 | 5.25 | 1.75 | 1.5 | 1 | 1.75 | 1.5 | 1 | 5.25 | 1 | 1.75 | 1 | 1.75 | 1 | 1 | 1 | 1.75 | 1 | 3 | 1.75 | 1 |
R5 | 1.5 | 1 | 1.5 | 1.5 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1 | 1.75 | 1 | 1 | 1 | 1.75 | 2.5 | 1 | 1 | 1 |
R6 | 1.75 | 1.5 | 1.75 | 1.5 | 1.75 | 1 | 3 | 3 | 1.75 | 3 | 1.75 | 1 | 1 | 1.5 | 1 | 1 | 1 | 1 | 1 | 1 |
R7 | 1 | 1 | 1 | 1 | 1 | 1 | 1.75 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
R8 | 2.25 | 1.75 | 2.5 | 1 | 3 | 5.25 | 6.75 | 3 | 1 | 2.25 | 1.75 | 1 | 2.5 | 2.5 | 1.5 | 1 | 9 | 1 | 3 | 1.75 |
R9 | 7.5 | 2.5 | 1.75 | 1.5 | 1.75 | 4.5 | 2.5 | 1 | 1.75 | 1.75 | 5.25 | 1 | 1 | 1 | 1 | 2.25 | 1.75 | 1.5 | 1 | 1 |
R10 | 6.75 | 5.25 | 1 | 5.25 | 1 | 5.25 | 1 | 1 | 1.75 | 1.75 | 9 | 1 | 1 | 1 | 1 | 1.5 | 2.5 | 3 | 1 | 5.25 |
R11 | 2.5 | 1.75 | 1 | 1 | 1.75 | 2.25 | 1.75 | 1 | 1 | 1 | 6.75 | 1 | 1.75 | 1 | 1 | 5.25 | 1.75 | 1 | 1 | 1.75 |
R12 | 7.5 | 1 | 1 | 3 | 1 | 3 | 1.5 | 1 | 1 | 1 | 1.75 | 1 | 1.75 | 1 | 1 | 2.25 | 2.5 | 1.75 | 1 | 1.5 |
R13 | 9 | 7.5 | 1 | 9 | 1 | 9 | 2.25 | 1 | 3 | 1.75 | 1.5 | 1.75 | 1 | 1 | 1 | 1.75 | 1.75 | 9 | 1 | 1.75 |
R14 | 5.25 | 9 | 1 | 7.5 | 1 | 9 | 1 | 1.5 | 3 | 1 | 1 | 1.75 | 1.75 | 1 | 1 | 1 | 2.25 | 6.75 | 1 | 1 |
R15 | 1 | 9 | 6.75 | 5.25 | 2.25 | 1.5 | 6.75 | 1.5 | 3 | 2.5 | 1 | 5.25 | 1 | 1 | 1 | 1 | 1 | 1 | 1.5 | 1 |
R16 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1.5 | 1 |
R17 | 1 | 9 | 1 | 7.5 | 1 | 7.5 | 1 | 1.75 | 3 | 1 | 2.5 | 1 | 1 | 2.25 | 2.5 | 1 | 1 | 4.5 | 1 | 1.75 |
R18 | 2.25 | 1 | 3 | 1 | 3 | 1 | 1 | 5.25 | 1 | 1.5 | 1 | 1.75 | 1.5 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1 |
R19 | 9 | 9 | 1.5 | 1.5 | 2.5 | 1 | 2.25 | 1.75 | 2.25 | 2.25 | 1 | 1.5 | 1 | 9 | 1 | 1 | 1 | 1 | 1 | 1 |
No. | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 | A18 | A19 | A20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 10 | 2.25 | 1 | 1 | 1 | 1 | 1 | 1 | 5.25 | 5.25 | 6.75 | 1 | 1.75 | 1 | 1 | 2.25 | 1.75 | 1 | 1 | 1.75 |
A2 | 2.25 | 10 | 1 | 1 | 1 | 3 | 9 | 2.25 | 9 | 1 | 1 | 9 | 2.25 | 2.25 | 1 | 1 | 1 | 1 | 1 | 1 |
A3 | 1 | 1 | 10 | 1 | 9 | 1 | 9 | 3 | 1 | 9 | 5.25 | 1.75 | 1 | 5.25 | 1 | 1 | 1 | 1 | 1 | 1.75 |
A4 | 1 | 1 | 1 | 10 | 1 | 9 | 5.25 | 1.75 | 9 | 1.75 | 3 | 1 | 1 | 1 | 1 | 1 | 9 | 1.5 | 1 | 1 |
A5 | 1 | 1 | 9 | 1 | 10 | 1 | 7.5 | 1 | 1 | 7.5 | 9 | 1 | 1 | 7.5 | 1 | 1 | 7.5 | 1 | 1 | 1 |
A6 | 1 | 3 | 1 | 9 | 1 | 10 | 9 | 1 | 1 | 7.5 | 1.5 | 1 | 1 | 7.5 | 1.5 | 1.5 | 7.5 | 1 | 1 | 1 |
A7 | 1 | 9 | 9 | 5.25 | 7.5 | 9 | 10 | 7.5 | 9 | 9 | 9 | 7.5 | 1 | 9 | 1 | 1 | 1.75 | 1 | 1 | 1 |
A8 | 1 | 2.25 | 3 | 1.75 | 1 | 1 | 7.5 | 10 | 1.5 | 1 | 1.5 | 1 | 6.75 | 6.75 | 1 | 1 | 1 | 1 | 1 | 1 |
A9 | 5.25 | 9 | 1 | 9 | 1 | 1 | 9 | 1.5 | 10 | 1.75 | 1 | 2.25 | 1.75 | 6.75 | 1 | 1 | 1.75 | 1.75 | 1 | 1 |
A10 | 5.25 | 1 | 9 | 1.75 | 7.5 | 7.5 | 9 | 1 | 1.75 | 10 | 1 | 1.75 | 1 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1 |
A11 | 6.75 | 1 | 5.25 | 3 | 9 | 1.5 | 9 | 1.5 | 1 | 1 | 10 | 4.5 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 2.25 |
A12 | 1 | 9 | 1.75 | 1 | 1 | 1 | 7.5 | 1 | 2.25 | 1.75 | 4.5 | 10 | 4.5 | 1 | 1 | 1 | 2.5 | 1 | 1 | 1 |
A13 | 1.75 | 2.25 | 1 | 1 | 1 | 1 | 1 | 6.75 | 1.75 | 1 | 1 | 4.5 | 10 | 1 | 1 | 5.25 | 1.75 | 5.25 | 1 | 9 |
A14 | 1 | 2.25 | 5.25 | 1 | 7.5 | 7.5 | 9 | 6.75 | 6.75 | 1.75 | 3 | 1 | 1 | 10 | 2.25 | 1 | 2.25 | 3 | 9 | 1 |
A15 | 1 | 1 | 1 | 1 | 1 | 1.5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2.25 | 10 | 1 | 1 | 1 | 3 | 1 |
A16 | 2.25 | 1 | 1 | 1 | 1 | 1.5 | 1 | 1 | 1 | 1 | 1 | 1 | 5.25 | 1 | 1 | 10 | 1 | 1.5 | 1.75 | 2.5 |
A17 | 1.75 | 1 | 1 | 9 | 7.5 | 7.5 | 1.75 | 1 | 1.75 | 1 | 1 | 2.5 | 1.75 | 2.25 | 1 | 1 | 10 | 7.5 | 2.5 | 1 |
A18 | 1 | 1 | 1 | 1.5 | 1 | 1 | 1 | 1 | 1.75 | 1 | 1 | 1 | 5.25 | 3 | 1 | 1.5 | 7.5 | 10 | 1.75 | 1 |
A19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 3 | 1.75 | 2.5 | 1.75 | 10 | 1 |
A20 | 1.75 | 1 | 1.75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2.25 | 1 | 9 | 1 | 1 | 2.5 | 1 | 1 | 1 | 10 |
No. | Sustainable Supply Chain Risks | Integrated Weight |
---|---|---|
R1 | Product safety and quality | 0.06398 |
R2 | Staff information was leaked | 0.05759 |
R3 | Illegal operation by an employee | 0.04347 |
R4 | Inadequate information security and information leakage | 0.04172 |
R5 | Information system instability | 0.07186 |
R6 | Bullwhip effect | 0.02526 |
R7 | Man-made accidents | 0.01827 |
R8 | IT and information sharing | 0.02589 |
R9 | Disruption or delay in the delivery of goods because of inadequate liquidity and poor financial conditions | 0.07345 |
R10 | Credibility and competence of operators and leaders | 0.07053 |
R11 | The company’s financial management and control process, poor management policies | 0.02128 |
R12 | The company’s market share has decreased | 0.04623 |
R13 | Brand reputation is damaged, corporate culture is consistent | 0.05877 |
R14 | Reductions in poor-quality materials have resulted in termination of supply | 0.04954 |
R15 | Failure to deliver on time, affecting customer expectations | 0.05707 |
R16 | Working conditions at production centers are poor | 0.01614 |
R17 | Supply chain accidents, delivery delays and a decline in the company’s reputation | 0.02787 |
R18 | Data missing, unable to obtain part of the information | 0.02783 |
R19 | Long product lead time | 0.06716 |
No. | Agility Criteria | Grey Correlation Degree | Sort |
---|---|---|---|
A1 | Production and sales capability | 0.501510 | 1 |
A11 | Quick decision/strategic flexibility | 0.493313 | 2 |
A15 | Electronic shipment of finished products to control shipment operations | 0.490280 | 3 |
A10 | Supplier on-time delivery rates | 0.481995 | 4 |
A16 | Cost minimization | 0.476939 | 5 |
A9 | Improve customer service | 0.476330 | 6 |
A13 | Quality improvement | 0.471854 | 7 |
A7 | Quick customer response | 0.469493 | 8 |
A8 | Accuracy of data | 0.452583 | 9 |
A2 | Improve customer satisfaction | 0.448352 | 10 |
A6 | Establish long-term cooperation and trust relationship with partners | 0.445881 | 11 |
A14 | Reduce delivery time, that is, delivery time control | 0.445472 | 12 |
A4 | Establish partnerships with other enterprises/implement win-win cooperation strategies with suppliers | 0.431746 | 13 |
A20 | Manage the core competitiveness of the enterprise | 0.426336 | 14 |
A12 | Improve delivery reliability | 0.425416 | 15 |
A18 | Enhance brand value | 0.417741 | 16 |
A17 | Actively build an information sharing platform with partners | 0.417253 | 17 |
A3 | Shorten development cycle/enhance product innovation by improving R&D capability/new product launch frequency | 0.412224 | 18 |
A5 | Reduce manufacturing lead time/lead time for quick response/synchronous engineering | 0.407210 | 19 |
A19 | Adopt e-business | 0.406884 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Yu, R.-Y.; Chang, A.-Y.; Liu, W.-L.; Sun, A.-C. Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks. Mathematics 2022, 10, 552. https://doi.org/10.3390/math10040552
Hsu C-H, Yu R-Y, Chang A-Y, Liu W-L, Sun A-C. Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks. Mathematics. 2022; 10(4):552. https://doi.org/10.3390/math10040552
Chicago/Turabian StyleHsu, Chih-Hung, Ru-Yue Yu, An-Yuan Chang, Wan-Ling Liu, and An-Ching Sun. 2022. "Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks" Mathematics 10, no. 4: 552. https://doi.org/10.3390/math10040552
APA StyleHsu, C. -H., Yu, R. -Y., Chang, A. -Y., Liu, W. -L., & Sun, A. -C. (2022). Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks. Mathematics, 10(4), 552. https://doi.org/10.3390/math10040552