Contrast-Independent Partially Explicit Time Discretizations for Quasi Gas Dynamics
Abstract
:1. Introduction
- We use multiscale spatial decomposition that identifies fast and slow components of the solution.
- Proposed approach uses implicit treatment for a few degrees of freedom and the rest is treated explicitly. The resulting time constraint is independent of the contrast and scales as the coarse-mesh size.
2. Preliminaries
3. Partially Explicit Temporal Splitting Scheme
3.1. Stability
3.2. Case and Are Orthogonal
3.3. Case and Are Non-Orthogonal
3.4. Remarks
3.5. and Constructions
3.5.1. CEM Method
3.5.2. Construction of
4. Numerical Result
- Implicit CEM. In this, we use only implicit method with fewer degrees of freedom (without additional degrees of freedom) and compute the error associated with the multiscale approach.
- Implicit CEM with additional basis functions. In this approach, we take into account additional degrees of freedom and handle them in implicit manner. The method is more expensive and corresponds to full implicit approach.
- Partial Explicit Splitting CEM. In our approach, we take into account additional degrees of freedom and handle them in explicit manner. One approach for additional degrees is presented in Section 3.5.2. Partial Explicit Splitting CEM and Implicit CEM have the same degrees of freedom, while partial Explicit Splitting CEM handles additional degrees of freedom explicitly.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chetverushkin, B.N.; D’Ascenzo, N.; Saveliev, A.V.; Saveliev, V. Kinetic model and magnetogasdynamics equations. Comput. Math. Math. Phys. 2018, 58, 691–699. [Google Scholar] [CrossRef]
- Chetverushkin, B.; Chung, E.; Efendiev, Y.; Pun, S.M.; Zhang, Z. Computational multiscale methods for quasi-gas dynamic equations. arXiv 2020, arXiv:2009.00068. [Google Scholar] [CrossRef]
- Chung, E.; Efendiev, Y.; Leung, W.T.; Vabishchevich, P.N. Contrast-independent partially explicit time discretizations for multiscale flow problems. arXiv 2021, arXiv:2101.04863. [Google Scholar] [CrossRef]
- Chung, E.; Efendiev, Y.; Leung, W.T.; Vabishchevich, P.N. Contrast-independent partially explicit time discretizations for multiscale wave problems. arXiv 2021, arXiv:2102.13198. [Google Scholar]
- Chung, E.; Efendiev, Y.; Leung, W.T. Constraint energy minimizing generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 2018, 339, 298–319. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.T.; Efendiev, Y.; Leung, W.T. Constraint energy minimizing generalized multiscale finite element method in the mixed formulation. Comput. Geosci. 2018, 22, 677–693. [Google Scholar] [CrossRef] [Green Version]
- Durlofsky, L. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 1991, 27, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Allaire, G.; Brizzi, R. A multiscale finite element method for numerical homogenization. SIAM J. Multiscale Model. Simul. 2005, 4, 790–812. [Google Scholar] [CrossRef] [Green Version]
- Efendiev, Y.; Hou, T. Multiscale Finite Element Methods: Theory and Applications; Surveys and Tutorials in the Applied Mathematical Sciences; Springer: New York, NY, USA, 2009; Volume 4. [Google Scholar]
- Hou, T.; Wu, X. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 1997, 134, 169–189. [Google Scholar] [CrossRef] [Green Version]
- Jenny, P.; Lee, S.; Tchelepi, H. Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 2003, 187, 47–67. [Google Scholar] [CrossRef]
- Chung, E.T.; Efendiev, Y.; Hou, T. Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 2016, 320, 69–95. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.T.; Efendiev, Y.; Leung, W.T. Generalized multiscale finite element methods for wave propagation in heterogeneous media. Multiscale Model. Simul. 2014, 12, 1691–1721. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.T.; Efendiev, Y.; Leung, W.T. Fast online generalized multiscale finite element method using constraint energy minimization. J. Comput. Phys. 2018, 355, 450–463. [Google Scholar] [CrossRef] [Green Version]
- Efendiev, Y.; Galvis, J.; Hou, T. Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 2013, 251, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.T.; Efendiev, Y.; Leung, W.T.; Vasilyeva, M.; Wang, Y. Non-local multi-continua upscaling for flows in heterogeneous fractured media. J. Comput. Phys. 2018, 372, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Owhadi, H.; Zhang, L. Metric-based upscaling. Commun. Pure. Appl. Math. 2007, 60, 675–723. [Google Scholar] [CrossRef]
- Weinan, E.; Engquist, B. Heterogeneous multiscale methods. Commun. Math. Sci. 2003, 1, 87–132. [Google Scholar]
- Henning, P.; Målqvist, A.; Peterseim, D. A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM Math. Model. Numer. Anal. 2014, 48, 1331–1349. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Kevrekidis, I. General tooth boundary conditions for equation free modeling. SIAM J. Sci. Comput. 2007, 29, 1495–1510. [Google Scholar] [CrossRef]
- Samaey, G.; Kevrekidis, I.; Roose, D. Patch dynamics with buffers for homogenization problems. J. Comput. Phys. 2006, 213, 264–287. [Google Scholar] [CrossRef] [Green Version]
- Marchuk, G.I. Splitting and alternating direction methods. Handb. Numer. Anal. 1990, 1, 197–462. [Google Scholar]
- Vabishchevich, P.N. Additive Operator-Difference Schemes: Splitting Schemes; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2013. [Google Scholar]
- Ascher, U.M.; Ruuth, S.J.; Spiteri, R.J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 1997, 25, 151–167. [Google Scholar] [CrossRef]
- Li, T.; Abdulle, A. Effectiveness of implicit methods for stiff stochastic differential equations. Commun. Comput. Phys. 2008, 3, 295–307. [Google Scholar]
- Abdulle, A. Explicit methods for stiff stochastic differential equations. In Numerical Analysis of Multiscale Computations; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–22. [Google Scholar]
- Engquist, B.; Tsai, Y.H. Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 2005, 74, 1707–1742. [Google Scholar] [CrossRef]
- Ariel, G.; Engquist, B.; Tsai, R. A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 2009, 78, 929–956. [Google Scholar] [CrossRef]
- Narayanamurthi, M.; Tranquilli, P.; Sandu, A.; Tokman, M. EPIRK-W and EPIRK-K time discretization methods. J. Sci. Comput. 2019, 78, 167–201. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, Y. Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn-Hilliard equation. J. Comput. Phys. 2019, 394, 719–731. [Google Scholar] [CrossRef]
- Duchemin, L.; Eggers, J. The explicit–implicit–null method: Removing the numerical instability of PDEs. J. Comput. Phys. 2014, 263, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Frank, J.; Hundsdorfer, W.; Verwer, J. On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 1997, 25, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Izzo, G.; Jackiewicz, Z. Highly stable implicit–explicit Runge–Kutta methods. Appl. Numer. Math. 2017, 113, 71–92. [Google Scholar] [CrossRef]
- Ruuth, S.J. Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 1995, 34, 148–176. [Google Scholar] [CrossRef]
- Hundsdorfer, W.; Ruuth, S.J. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 2007, 225, 2016–2042. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yang, Y. Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 2019, 395, 489–510. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetverushkin, B.; Efendiev, Y.; Leung, W.T. Contrast-Independent Partially Explicit Time Discretizations for Quasi Gas Dynamics. Mathematics 2022, 10, 576. https://doi.org/10.3390/math10040576
Chetverushkin B, Efendiev Y, Leung WT. Contrast-Independent Partially Explicit Time Discretizations for Quasi Gas Dynamics. Mathematics. 2022; 10(4):576. https://doi.org/10.3390/math10040576
Chicago/Turabian StyleChetverushkin, Boris, Yalchin Efendiev, and Wing Tat Leung. 2022. "Contrast-Independent Partially Explicit Time Discretizations for Quasi Gas Dynamics" Mathematics 10, no. 4: 576. https://doi.org/10.3390/math10040576
APA StyleChetverushkin, B., Efendiev, Y., & Leung, W. T. (2022). Contrast-Independent Partially Explicit Time Discretizations for Quasi Gas Dynamics. Mathematics, 10(4), 576. https://doi.org/10.3390/math10040576