Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin
Abstract
:1. Introduction
2. Preliminaries
- 1.
- Q is starlike univalent in Ω, and
- 2.
- .
3. Starlikeness of and Using Quasi-Subordination
4. Solution to Fekete–Szegő Problem for the Functions of and
Applications in the Bernoulli Lemniscate and Nephroid Domains
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, A.W. Univalent Functions; Mariner Publishing Co., Inc.: Tampa, FL, USA, 1983; Volume I. [Google Scholar]
- Hayman, W.K. Multivalent Functions; Cambridge Tracts in Mathematics and Mathematical Physics, No. 48; Cambridge University Press: Cambridge, UK, 1958. [Google Scholar]
- Liu, J.-L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2001, 259, 566–581. [Google Scholar] [CrossRef]
- Aouf, M.K. A class of meromorphic multivalent functions with positive coefficients. Taiwan. J. Math. 2008, 12, 2517–2533. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T.M. Some families of meromorphic p-valent functions involvinga new operator defined by generalized Mittag–Leffler function. J. Egypt. Math. Soc. 2018, 26, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Aouf, M.K. Families of meromorphic multivalent functions associated with the Dziok-Raina operator. Int. J. Anal. Appl. 2005, 2, 1–18. [Google Scholar]
- Liu, J.-L.; Srivastava, H.M. Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math. Comput. Model. 2004, 39, 21–34. [Google Scholar] [CrossRef]
- Ayub, U.; Mubeen, S.; Abdeljawad, T.; Rahman, G.; Nisar, K.S. The new Mittag–Leffler function and its applications. J. Math. 2020, 2020, 2463782. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag–Leffler type functions. Integral Transform. Spec. Funct. 1998, 7, 215–224. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Purohit, S.D.; Kalla, S.L. A generalization of q-Mittag–Leffler function. Mat. Bilten 2011, 35, 15–26. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Aldawish, I.; Ibrahim, R.W. Solvability of a New q-Differential Equation Related to q-Differential Inequality of a Special Type of Analytic Functions. Fractal Fract. 2021, 5, 228. [Google Scholar] [CrossRef]
- Selvaraj, C.; Karthikeyan, K.R. Some inclusion relationships for certain subclasses of meromorphic functions associated with a family of integral operators. Acta Math. Univ. Comen. (N.S.) 2009, 78, 245–254. [Google Scholar]
- Haji Mohd, M.; Darus, M. Fekete–Szegő problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2012, 192956. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.S. Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Altınkaya, S. Application of quasi-subordination for generalized Sakaguchi type functions. J. Complex Anal. 2017, 2017, 3780675. [Google Scholar] [CrossRef] [Green Version]
- Atshan, W.G.; Rahman, I.A.R.; Lupaş, A.A. Some results of new subclasses for bi-univalent functions using quasi-subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Cho, N.E. Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Math. 2021, 6, 7111–7124. [Google Scholar] [CrossRef]
- Ramachandran, C.; Soupramanien, T.; Sokół, J. The Fekete-Szegö functional associated with k-th root transformation using quasi-subordination. J. Anal. 2020, 28, 199–208. [Google Scholar] [CrossRef]
- Ramachandran, C.; Soupramanien, T.; Vanitha, T. Estimation of coefficient bounds for the subclasses of analytic functions associated with Chebyshev polynomial. J. Math. Comput. Sci. 2021, 11, 3232–3243. [Google Scholar]
- Mogra, M.L. Meromorphic multivalent functions with positive coefficients. I. Math. Jpn. 1990, 35, 1–11. [Google Scholar]
- Mogra, M.L. Meromorphic multivalent functions with positive coefficients. II. Math. Jpn. 1990, 35, 1089–1098. [Google Scholar]
- Uralegaddi, B.A.; Ganigi, M.D. Meromorphic multivalent functions with positive coefficients. Nepali Math. Sci. Rep. 1986, 11, 95–102. [Google Scholar]
- Aouf, M.K. On a class of meromorphic multivalent functions with positive coefficients. Math. Jpn. 1990, 35, 603–608. [Google Scholar] [CrossRef]
- Aouf, M.K. A generalization of meromorphic multivalent functions with positive coefficients. Math. Jpn. 1990, 35, 609–614. [Google Scholar]
- Srivastava, H.M.; Hossen, H.M.; Aouf, M.K. A unified presentation of some classes of meromorphically multivalent functions. Comput. Math. Appl. 1999, 38, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Elrifai, E.A.; Darwish, H.E.; Ahmed, A.R. On certain subclasses of meromorphic functions associated with certain differential operators. Appl. Math. Lett. 2012, 25, 952–958. [Google Scholar] [CrossRef] [Green Version]
- Lashin, A.Y. On certain subclasses of meromorphic functions associated with certain integral operators. Comput. Math. Appl. 2010, 59, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Ahmad, B. New subfamily of meromorphic multivalent starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Ghoos Ali Shah, S.; Hussain, S.; Rasheed, A.; Shareef, Z.; Darus, M. Application of quasisubordination to certain classes of meromorphic functions. J. Funct. Spaces 2020, 2020, 4581926. [Google Scholar]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Bulboacă, T. Properties of λ-pseudo-starlike functions of complex order defined by subordination. Axioms 2021, 10, 86. [Google Scholar] [CrossRef]
- Bulut, S.; Adegani, E.A.; Bulboacă, T. Majorization results for a general subclass of meromorphic multivalent functions. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2021, 83, 121–128. [Google Scholar]
- Bulboacă, T. Differential Subordinations and Superordinations; Recent Results; House of Science Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Lecture Notes Analysis, I, Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press Inc.: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Aouf, M.K. On a class of p-valent starlike functions of order α. Int. J. Math. Math. Sci. 1987, 10, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent Prestarlike Functions with Respect to Symmetric Points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions I. Ann. Pol. Math. 1973, 10, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Mohankumar, D.; Senguttuvan, A.; Karthikeyan, K.R.; Ganapathy Raman, R. Initial coefficient bounds and fekete-szego problem of pseudo-Bazilevič functions involving quasi-subordination. Adv. Dyn. Syst. Appl. 2021, 16, 767–777. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 2004, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Karthikeyan, K.R.; Umadevi, E. Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin. Mathematics 2022, 10, 600. https://doi.org/10.3390/math10040600
Breaz D, Karthikeyan KR, Umadevi E. Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin. Mathematics. 2022; 10(4):600. https://doi.org/10.3390/math10040600
Chicago/Turabian StyleBreaz, Daniel, Kadhavoor R. Karthikeyan, and Elangho Umadevi. 2022. "Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin" Mathematics 10, no. 4: 600. https://doi.org/10.3390/math10040600
APA StyleBreaz, D., Karthikeyan, K. R., & Umadevi, E. (2022). Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin. Mathematics, 10(4), 600. https://doi.org/10.3390/math10040600