Delays in Plant Virus Models and Their Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. SIRS Model
2.2. Plant Virus with Vector Transmission, Model A
2.3. Plant Virus with Vector Transmission, Model B
2.4. Numerical Methods
3. Results
4. Discussion
4.1. SIRS
4.2. Plant Virus with Vector Transmission, Models A and B
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
SIRS | Susceptible, infective, recovered, susceptible |
DDE | Delay Diffferential Equation |
ODE | Ordinary Differential Equation |
References
- Pallas, V.; García, J.A. How do plant viruses induce disease? interactions and interference with host components. J. Gen. Virol. 2011, 92, 2691–2705. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.M.; Banerjee, N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol. Mol. Biol. Rev. 1999, 63, 128–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fereres, A. Insect vectors as drivers of plant virus emergence. Curr. Opin. Virol. 2015, 10, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeger, M.J.; Jeger, M. A model for analysing plant-virus transmission characteristics and epidemic development. Math. Med. Biol. J. IMA 1998, 15, 1–18. [Google Scholar] [CrossRef]
- Shi, R.; Zhao, H.; Tang, S. Global dynamic analysis of a vector-borne plant disease model. Adv. Diff. Equ. 2014, 2014, 59. [Google Scholar] [CrossRef] [Green Version]
- Loebenstein, G.; Berger, P.H.; Brunt, A.A. Virus and Virus-like Diseases of Potatoes and Production of Seed-Potatoes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 479, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Ghoshal, B.; Sanfaçon, H. Symptom recovery in virus-infected plants: Revisiting the role of rna silencing mechanisms. Virology 2015, 479, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Nowak, M.; May, R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Perelson, A.S.; Kirschner, D.E.; De Boer, R. Dynamics of hiv infection of cd4+ t cells. Math. Biosci. 1993, 114, 81–125. [Google Scholar] [CrossRef] [Green Version]
- Wodarz, D. Killer Cell Dynamics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 32. [Google Scholar]
- Culshaw, R.V.; Ruan, S. A delay-differential equation model of hiv infection of cd4+ t-cells. Math. Biosci. 2000, 165, 27–39. [Google Scholar] [CrossRef]
- Mibei, K.; Wesley, K.; Daniel, A. Modelling of Malaria Transmission Using Delay Differential Equation. Math. Model. Appl. 2020, 5, 167. [Google Scholar] [CrossRef]
- Al Basir, F.; Takeuchi, Y.; Ray, S. Dynamics of a delayed plant disease model with Beddington-DeAngelis disease transmission. Math. Biosci. Eng. 2021, 18, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Chen-Charpentier, B.M. Modeling plant virus propagation with delays. J. Comput. Appl. Math. 2017, 309, 611–621. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T. Stability and Hopf Bifurcation Analysis of a Plant Virus Propagation Model with Two Delays. Discrete Dyn. Nat. Soc. 2018, 2018, e7126135. [Google Scholar] [CrossRef] [Green Version]
- McCluskey, C.C. Global stability for an sir epidemic model with delay and nonlinear incidence. Nonlinear Anal. Real World Appl. 2010, 11, 3106–3109. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, C. Global asymptotic stability of a delayed plant disease model. Math. Appl. Sci. Eng. 2020, 1, 27–38. [Google Scholar] [CrossRef]
- Liu, J. Hopf bifurcation analysis for an sirs epidemic model with logistic growth and delays. J. Appl. Math. Comput. 2016, 50, 557–576. [Google Scholar] [CrossRef]
- Li, Q.; Dai, Y.; Guo, X.; Zhang, X. Hopf bifurcation analysis for a model of plant virus propagation with two delays. Adv. Diff. Equ. 2018, 2018, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Erturk, V.S.; Almusawa, H. Mathematical structure of mosaic disease using microbial biostimulants via caputo and atangana–baleanu derivatives. Results Phys. 2021, 24, 104186. [Google Scholar] [CrossRef]
- Kumar, P.; Baleanu, D.; Erturk, V.S.; Inc, M.; Govindaraj, V. A delayed plant disease model with caputo fractional derivatives. Adv. Contin. Discrete Models 2022, 2022, 1–22. [Google Scholar] [CrossRef]
- Phan, T.; Pell, B.; Kendig, A.; Borer, E.; Kuang, Y. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete Contin. Dyn. Syst.-Ser. B 2021, 26, 515–539. [Google Scholar] [CrossRef]
- Erneux, T. Applied Delay Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 3. [Google Scholar]
- Kuang, Y. Delay Differential Equations; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Allen, L. An Introduction to Mathematical Biology; Pearson-Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Khan, Q.J.A.; Krishnan, E.V. An Epidemic Model with a Time Delay in Transmission. Appl. Math. 2003, 48, 193–203. [Google Scholar] [CrossRef]
- Liu, L. A delayed SIR model with general nonlinear incidence rate. Adv. Diff. Equ. 2015, 2015, 329. [Google Scholar] [CrossRef] [Green Version]
- Fages, F.; Gay, S.; Soliman, S. Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci. 2015, 599, 64–78. [Google Scholar] [CrossRef]
- Chan, M.-S.; Jeger, M.J. An analytical model of plant virus disease dynamics with roguing and replanting. J. Appl. Ecol. 1994, 31, 413–427. [Google Scholar] [CrossRef]
- Jeger, M.; Madden, L.; Van Den Bosch, F. Plant virus epidemiology: Applications and prospects for mathematical modeling and analysis to improve understanding and disease control. Plant Dis. 2018, 102, 837–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Ma, W.; Takeuchi, Y. Global analysis for delay virus dynamics model with beddington–deangelis functional response. Appl. Math. Lett. 2011, 24, 1199–1203. [Google Scholar] [CrossRef] [Green Version]
- MATLAB. R2021a; The MathWorks Inc.: Natick, MA, USA, 2018. [Google Scholar]
- Wolfram Research Inc. Mathematica, Version 12.2; Wolfram Research Inc.: Champaign, IL, USA, 2021; Available online: https://www.wolfram.com/mathematica (accessed on 12 December 2021).
- Maxima. Maxima, a Computer Algebra System. Version 5.45.1. 2021. Available online: https://maxima.sourceforge.io/ (accessed on 12 December 2021).
- Shampine, L.F.; Thompson, S.; Kierzenka, J. Solving Delay Differential Equations with dde23. 2000. Available online: http://www.runet.edu/~{}thompson/webddes/tutorial.pdf (accessed on 12 December 2021).
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Ermentrout, B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students; Siam: Philadelphia, PA, USA, 2002; Volume 14. [Google Scholar]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 74. [Google Scholar]
- Ruan, S. On nonlinear dynamics of predator-prey models with discrete delay. Math. Model. Nat. Phenom. 2009, 4, 140–188. [Google Scholar] [CrossRef]
- Forde, J.E. Delay Differential Equation Models in Mathematical Biology; University of Michigan: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Engelborghs, K.; Luzyanina, T.; Samaey, G. Dde-biftool: A matlab package for bifurcation analysis of delay differential equations. TW Rep. 2000, 305, 1–36. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen-Charpentier, B. Delays in Plant Virus Models and Their Stability. Mathematics 2022, 10, 603. https://doi.org/10.3390/math10040603
Chen-Charpentier B. Delays in Plant Virus Models and Their Stability. Mathematics. 2022; 10(4):603. https://doi.org/10.3390/math10040603
Chicago/Turabian StyleChen-Charpentier, Benito. 2022. "Delays in Plant Virus Models and Their Stability" Mathematics 10, no. 4: 603. https://doi.org/10.3390/math10040603
APA StyleChen-Charpentier, B. (2022). Delays in Plant Virus Models and Their Stability. Mathematics, 10(4), 603. https://doi.org/10.3390/math10040603