The Natural Approaches of Shafer-Fink Inequality for Inverse Sine Function
Abstract
:1. Introduction
2. Lemmas
3. Proof of Theorem 1
4. Proof of Theorem 2
5. Corollaries and Remarks
6. Conclusions
Funding
Conflicts of Interest
References
- Fink, A.M. Two inequalities. Publ. Elektroteh. Fak. Univ. Beogr. Mat. 1995, 6, 48–49. [Google Scholar]
- Mitrinovic, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Maleševic, B. An application of λ-method on Shafer-Fink’s inequality. Publ. Elektroteh. Fak. Univ. Beogr. Mat. 1997, 8, 90–92. [Google Scholar]
- Zhu, L. On Shafer-Fink inequality. Math. Inequal. Appl. 2005, 8, 571–574. [Google Scholar] [CrossRef]
- Zhu, L. On Shafer-Fink-Type inequality. J. Inequal. Appl. 2007, 2007, 67430. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.-H.; Zhu, L. Generalizations of Shafer-Fink-type inequalities for the arc sine function. J. Inequal. Appl. 2009, 2009, 705317. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-D.; Qian, C.; Zhu, P.; Pan, X.-H. Monotonous two-parameter functions for asymptoticly approximating the inequalities involving the inverse tangent functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2022, 116, 1–10. [Google Scholar] [CrossRef]
- Guo, B.-N.; Luo, Q.-M.; Qi, F. Sharpening and generalizations of Shafer-Fink’s double inequality for the arc sine function. Filomat 2013, 27, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Bhayo, B.A.; Sandor, J. On Carlson’s and Shafer’s inequalities. Probl. Anal. 2014, 3, 3–15. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vuorinen, M.; Zhang, X.H. Analytic number theory, approximation theory and special functions. In Topics in Special Functions III; Milovanovic, G.V., Rassias, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–345. [Google Scholar]
- Nishizawa, Y. Sharpening of Jordan’s type and Shafer-Fink’s type inequalities with exponential approximations. Appl. Math. Comput. 2015, 269, 146–154. [Google Scholar] [CrossRef]
- Bagul, Y.J.; Dhaigude, R.M. Simple Efficient Bounds for Arcsine and Arctangent Functions. Available online: ttps://doi.org/10.21203/rs.3.rs-404784/v1 (accessed on 10 February 2021).
- Wu, S.-H.; Bercu, G. Pade approximants for inverse trigonometric functions and their applications. J. Inequal. Appl. 2017, 2017, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bercu, G. Sharp refinements for the inverse sine function related to Shafer-Fink’s inequality. Math. Probl. Eng. 2017, 2017, 9237932. [Google Scholar] [CrossRef] [Green Version]
- Maleševic, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function. J. Inequal. Appl. 2017, 2017, 275. [Google Scholar] [CrossRef] [PubMed]
- Lehmer, D.H. Interesting series involving the central binomial coefficient. Am. Math. Mon. 1985, 92, 449–457. [Google Scholar] [CrossRef]
- Sury, B.; Wang, T.-M.; Zhao, F.-Z. Identities involving reciprocals of binomial coefficients. J. Int. Sequ. 2004, 7, 3. [Google Scholar]
- Chen, H.W. A power series expansion and its applications. Int. J. Math. Educ. Sci. Tech. 2006, 37, 362–368. [Google Scholar] [CrossRef]
- Sofo, A. Integral Identities Involving Reciprocals of Single and Double Binomial Coefficients; RGMIA Seminar Series; Austral Internet Publishing: Victoria, Australia, 2007. [Google Scholar]
- Borwein, J.M.; Chamberland, M. Integer powers of Arcsin. Int. J. Math. Educ. Sci. Tech. 2007, 2017, 19381. [Google Scholar] [CrossRef]
- Maleševic, B.; Rašajski, M.; Lutovac, T. Double-sided Taylor’s approximations and their applications in theory of analytic inequalities. In Differential and Integral Inequalities. Springer Optimization and Its Applications; Andrica, D., Rassias, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 151, pp. 569–582. [Google Scholar] [CrossRef] [Green Version]
- Maleševic, B.; Lutovac, T.; Rašajski, M.; Banjac, B. Double-sided Taylor’s approximations and their applications in theory of trigonometric inequalities. In Trigonometric Sums and their Applications; Rassias, M.T., Raigorodskii, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 159–167. [Google Scholar] [CrossRef] [Green Version]
- Maleševic, B.; Lutovac, T.; Rašajski, M. Generalizations and improvements of approximations of some analytic functions—A survey. In Approximation and Computation in Science and Engineering, Springer Optimization and Its Applications; Daras, N.J., Rassias, T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 180. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L. The Natural Approaches of Shafer-Fink Inequality for Inverse Sine Function. Mathematics 2022, 10, 647. https://doi.org/10.3390/math10040647
Zhu L. The Natural Approaches of Shafer-Fink Inequality for Inverse Sine Function. Mathematics. 2022; 10(4):647. https://doi.org/10.3390/math10040647
Chicago/Turabian StyleZhu, Ling. 2022. "The Natural Approaches of Shafer-Fink Inequality for Inverse Sine Function" Mathematics 10, no. 4: 647. https://doi.org/10.3390/math10040647
APA StyleZhu, L. (2022). The Natural Approaches of Shafer-Fink Inequality for Inverse Sine Function. Mathematics, 10(4), 647. https://doi.org/10.3390/math10040647