Second-Order Spatial-Temporal Correlation Filters for Visual Tracking
Abstract
:1. Introduction
- We propose a new discriminative correlation filter model for visual tracking with complex appearance variations, unlike prior DCF-based trackers in which the first-order data-fitting information is only used. We incorporated the second-order data fitting and spatial–temporal regularization into the DCF framework and developed a more robust tracker;
- An effective alternating-direction method-of-multipliers (ADMM)-based algorithm was used to solve the proposed tracking model;
- Extensive experiments on the benchmarking databases demonstrated that our SSCF can achieve competitive performance compared to the state-of-the-art trackers.
2. Related Work
3. The Proposed Model
3.1. Objective Function Construction
3.2. Optimization Algorithm
Algorithm 1 SSCF algorithm |
|
3.3. Computational Complexity
4. Experiment Results and Analysis
4.1. Results on the CVPR2013 Database
4.2. Results on the OTB100 Database
4.3. Results on the OTB50 Database
4.4. Results on the DTB70 Database
4.5. Results on the UAV123 Database
4.6. Results on the UAVDT-M Database
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Tang, W.; Ding, Z. Long-Term Target Tracking of UAVs Based on Kernelized Correlation Filter. Mathematics 2021, 9, 3006. [Google Scholar] [CrossRef]
- Zhu, X.-F.; Wu, X.-J.; Xu, T.; Feng, Z.; Kittler, J. Robust visual object tracking via adaptive attribute-aware discriminative correlation filters. IEEE Trans. Multimed. 2021, 24, 1–13. [Google Scholar] [CrossRef]
- Deng, C.; He, S.; Han, Y.; Zhao, B. Learning dynamic spatial–temporal regularization for uav object tracking. IEEE Signal Process. Lett. 2021, 28, 1230–1234. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Miao, Y.; Yang, Y.; Zhao, Z.; Wang, Z.; Sun, Q.; Wu, D.O. Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking. Mathematics 2019, 7, 1059. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Ma, Y.; Li, Z.; Zhang, B. A visual tracking algorithm via confidence-based multi-feature correlation filtering. Multimed. Tools Appl. 2021, 80, 23963–23982. [Google Scholar] [CrossRef]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 702–715. [Google Scholar]
- Zhang, K.; Zhang, L.; Liu, Q.; Zhang, D.; Yang, M.-H. Fast visual tracking via dense spatio-temporal context learning. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 127–141. [Google Scholar]
- Wang, Y.; Luo, X.; Ding, L.; Wu, J.; Fu, S. Robust visual tracking via a hybrid correlation filter. Multimed. Tools Appl. 2019, 78, 31633–31648. [Google Scholar] [CrossRef]
- Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel and spatial reliability. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6309–6318. [Google Scholar]
- Zhu, H.; Han, Y.; Wang, Y.; Yuan, G. Hybrid cascade filter with complementary features for visual tracking. IEEE Signal Process. Lett. 2021, 28, 86–90. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 254–265. [Google Scholar]
- Javed, S.; Mahmood, A.; Dias, J.; Seneviratne, L.; Werghi, N. Hierarchical spatiotemporal graph regularized discriminative correlation filter for visual object tracking. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Z.; Wu, B.; Mei, Z.; Gao, G. Visual object tracking with discriminative correlation filtering and hybrid color feature. Multimedia Tools Appl. 2019, 78, 34725–34744. [Google Scholar] [CrossRef]
- Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Amsterdam, The Netherlands, 8–16 October 2016; pp. 1430–1438. [Google Scholar]
- Zhu, H.; Peng, H.; Xu, G.; Deng, L.; Cheng, Y.; Song, A. Bilateral weighted regression ranking model with spatial–temporal correlation filter for visual tracking. IEEE Trans. Multimed. 2021. [Google Scholar] [CrossRef]
- Galoogahi, H.K.; Sim, T.; Lucey, S. Multi-channel correlation filters. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 3072–3079. [Google Scholar]
- Han, Y.; Deng, C.; Zhao, B.; Zhao, B. Spatial-temporal context-aware tracking. IEEE Signal Process. Lett. 2019, 26, 500–504. [Google Scholar] [CrossRef]
- Kumar, A.; Walia, G.S.; Sharma, K. Real-time visual tracking via multi-cue based adaptive particle filter framework. Multimed. Tools Appl. 2020, 79, 20639–20663. [Google Scholar] [CrossRef]
- Jain, M.; Tyagi, A.; Subramanyam, A.V.; Denman, S.; Sridharan, S.; Fookes, C. Channel graph regularized correlation filters for visual object tracking. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 715–729. [Google Scholar] [CrossRef]
- Fu, C.; Xu, J.; Lin, F.; Guo, F.; Zhang, Z. Object saliency-aware dual regularized correlation filter for real-time aerial tracking. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 8940–8951. [Google Scholar] [CrossRef]
- Xu, T.; Feng, Z.-H.; Wu, X.-J.; Kittler, J. Joint group feature selection and discriminative filter learning for robust visual object tracking. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 7950–7960. [Google Scholar]
- Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4310–4318. [Google Scholar]
- Li, F.; Tian, C.; Zuo, W.; Zhang, L.; Yang, M.-H. Learning spatial temporal regularized correlation filters for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4904–4913. [Google Scholar]
- Kiani Galoogahi, H.; Fagg, A.; Lucey, S. Learning background-aware correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1135–1143. [Google Scholar]
- Xu, T.; Feng, Z.-H.; Wu, X.-J.; Kittler, J. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking. IEEE Trans. Image Process. 2019, 28, 5596–5609. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Zhang, J.; Xu, G.; Zhu, H. Infrared small target detection via adaptive m-estimator ring top-hat transformation. Pattern Recognit. 2021, 112, 1–9. [Google Scholar] [CrossRef]
- You, X.; Li, Q.; Tao, D.; Ou, W.; Gong, M. Local metric learning for exemplar-based object detection. IEEE Trans. Circuits And Systems Video Technol. 2014, 24, 1265–1276. [Google Scholar]
- Zhu, H.; Ni, H.; Liu, S.; Xu, G.; Deng, L. Tnlrs: Target-aware non-local low-rank modeling with saliency filtering regularization for infrared small target detection. IEEE Trans. Image Process. 2020, 29, 9546–9558. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, Y. Joint detection and tracking scheme for target tracking in moving platform. In Proceedings of the IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–4. [Google Scholar]
- Zhang, L.; Fang, Q. Multi-target tracking based on target detection and mutual information. In Proceedings of the Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2020; pp. 1242–1245. [Google Scholar]
- Liu, C.; Gong, J.; Zhu, J.; Zhang, J.; Yan, Y. Correlation filter with motion detection for robust tracking of shape-deformed targets. IEEE Access 2020, 8, 89161–89170. [Google Scholar] [CrossRef]
- Min, Y.; Wei, Z.; Tan, K. A detection aided multi-filter target tracking algorithm. IEEE Access 2019, 7, 71616–71626. [Google Scholar] [CrossRef]
- Ou, W.; Yu, S.; Li, G.; Lu, J.; Zhang, K.; Xie, G. Multi-view non-negative matrix factorization by patch alignment framework with view consistency. Neurocomputing 2016, 204, 116–124. [Google Scholar] [CrossRef]
- Long, Z.Z.; Xu, G.; Du, J.; Zhu, H.; Yu, Y.F. Flexible subspace clustering: A joint feature selection and k-means clustering framework. Big Data Res. 2021, 23, 1–9. [Google Scholar] [CrossRef]
- Mishro, P.K.; Agrawal, S.; Panda, R.; Abraham, A. A novel type-2 fuzzy c-means clustering for brain mr image segmentation. IEEE Trans. Cybern. 2021, 51, 3901–3912. [Google Scholar] [CrossRef] [PubMed]
- Ayo, F.E.; Folorunso, O.; Ibharalu, F.T.; Osinuga, I.A.; Abayomi-Alli, A. A probabilistic clustering model for hate speech classification in twitter. Expert Syst. Appl. 2021, 173, 1–21. [Google Scholar] [CrossRef]
- Keuper, M.; Tang, S.; Andres, B.; Brox, T.; Schiele, B. Motion segmentation amp; multiple object tracking by correlation co-clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 140–153. [Google Scholar] [CrossRef]
- Li, L.-Q.; Wang, X.-L.; Liu, Z.-X.; Xie, W.-X. A novel intuitionistic fuzzy clustering algorithm based on feature selection for multiple object tracking. Int. J. Fuzzy Syst. 2019, 21, 1613–1628. [Google Scholar] [CrossRef]
- He, S.; Shin, H.-S.; Tsourdos, A. Multi-sensor multi-target tracking using domain knowledge and clustering. IEEE Sens. J. 2018, 18, 8074–8084. [Google Scholar] [CrossRef] [Green Version]
- Gou, J.; Qiu, W.; Yi, Z.; Shen, X.; Zhan, Y.; Ou, W. Locality constrained representation-based k-nearest neighbor classification. Knowl.-Based Syst. 2019, 167, 38–52. [Google Scholar] [CrossRef]
- Gou, J.; Ma, H.; Ou, W.; Zeng, S.; Rao, Y.; Yang, H. A generalized mean distance-based k-nearest neighbor classifier. Expert Syst. Appl. 2019, 115, 356–372. [Google Scholar] [CrossRef]
- Yu, Y.-F.; Dai, D.-Q.; Ren, C.-X.; Huang, K.-K. Discriminative multi-layer illumination-robust feature extraction for face recognition. Pattern Recognit. 2017, 67, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Du, F.; Liu, P.; Zhao, W.; Tang, X. Joint channel reliability and correlation filters learning for visual tracking. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1625–1638. [Google Scholar] [CrossRef]
- Li, A.; Yang, M.; Yang, W. Feature integration with adaptive importance maps for visual tracking. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 779–785. [Google Scholar] [CrossRef] [Green Version]
- Lukezic, A.; Vojir, T.; Ehovinzajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel and spatial reliability. Int. Comput. Vis. 2018, 126, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelljan, M.; Hager, G.; Khan, F.S.; Felsberg, M. Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. 2016, 39, 1561–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6638–6646. [Google Scholar]
- Huang, Z.; Fu, C.; Li, Y.; Lin, F.; Lu, P. Learning aberrance repressed correlation filters for real-time UAV tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 2891–2900. [Google Scholar]
- Zheng, G.; Fu, C.; Ye, J.; Lin, F.; Ding, F. Mutation Sensitive Correlation Filter for Real-Time UAV Tracking with Adaptive Hybrid Label. In Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 503–509. [Google Scholar]
- Li, Y.; Fu, C.; Ding, F.; Huang, Z.; Lu, G. AutoTrack: Towards High-Performance Visual Tracking for UAV With Automatic Spatio-Temporal Regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11920–11929. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.-H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.-H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Yeung, D. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4140–4146. [Google Scholar]
- Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for UAV tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 445–461. [Google Scholar]
- Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The unmanned aerial vehicle benchmark: Object detection and tracking. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 370–386. [Google Scholar]
- Ou, W.; You, X.; Tao, D.; Zhang, P.; Tang, Y.; Zhu, Z. Robust face recognition via occlusion dictionary learning. Pattern Recognit. 2014, 47, 1559–1572. [Google Scholar] [CrossRef]
- Ou, W.; Luan, X.; Gou, J.; Zhou, Q.; Xiao, W.; Xiong, X.; Zeng, W. Robust discriminative nonnegative dictionary learning for occluded face recognition. Pattern Recognit. Lett. 2018, 107, 41–49. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, V. Voxel-based 3d occlusion-invariant face recognition using game theory and simulated annealing. Multimed. Tools Appl. 2020, 79, 26517–26547. [Google Scholar] [CrossRef]
- Zhu, H.; Qiao, Y.; Xu, G.; Deng, L.; Yu, Y.-F. Dspnet: A lightweight dilated convolution neural networks for spectral deconvolution with selfpaced learning. IEEE Trans. Ind. Inform. 2020, 16, 7392–7401. [Google Scholar] [CrossRef]
Attributes | DSST [48] | KCF [47] | SAMF [12] | SRDCF [23] | BACF [25] | STRCF [24] | LADCF [26] | SSCF |
---|---|---|---|---|---|---|---|---|
FM | 0.413/0.485 | 0.435/0.559 | 0.460/0.568 | 0.541/0.691 | 0.583/0.766 | 0.572/0.697 | 0.591/0.728 | 0.604/0.754 |
BC | 0.517/0.694 | 0.535/0.753 | 0.520/0.676 | 0.587/0.803 | 0.631/0.833 | 0.625/0.850 | 0.592/0.783 | 0.641/0.840 |
DEF | 0.492/0.633 | 0.512/0.702 | 0.604/0.775 | 0.609/0.811 | 0.644/0.832 | 0.639/0.854 | 0.657/0.852 | 0.680/0.885 |
IPR | 0.555/0.753 | 0.484/0.702 | 0.512/0.692 | 0.550/0.739 | 0.622/0.824 | 0.621/0.802 | 0.612/0.785 | 0.633/0.826 |
IV | 0.551/0.711 | 0.477/0.699 | 0.498/0.655 | 0.557/0.727 | 0.600/0.788 | 0.599/0.779 | 0.599/0.752 | 0.630/0.799 |
LR | 0.378/0.682 | 0.272/0.629 | 0.376/0.709 | 0.471/0.767 | 0.406/0.659 | 0.540/0.777 | 0.580/0.776 | 0.510/0.744 |
MB | 0.433/0.504 | 0.462/0.589 | 0.428/0.507 | 0.560/0.719 | 0.609/0.790 | 0.566/0.681 | 0.579/0.702 | 0.626/0.778 |
OCC | 0.523/0.690 | 0.499/0.724 | 0.598/0.816 | 0.610/0.815 | 0.612/0.797 | 0.646/0.854 | 0.673/0.869 | 0.673/0.872 |
OPR | 0.529/0.723 | 0.485/0.710 | 0.549/0.749 | 0.586/0.796 | 0.620/0.822 | 0.651/0.863 | 0.657/0.850 | 0.667/0.875 |
OV | 0.462/0.511 | 0.550/0.650 | 0.555/0.636 | 0.555/0.680 | 0.553/0.706 | 0.632/0.728 | 0.633/0.720 | 0.652/0.748 |
SV | 0.546/0.738 | 0.427/0.679 | 0.507/0.723 | 0.587/0.778 | 0.584/0.765 | 0.647/0.836 | 0.649/0.821 | 0.639/0.823 |
Attributes | DSST [48] | KCF [47] | SAMF [12] | SRDCF [23] | BACF [25] | STRCF [24] | LADCF [26] | SSCF |
---|---|---|---|---|---|---|---|---|
FM | 0.439/0.540 | 0.457/0.617 | 0.502/0.649 | 0.586/0.749 | 0.600/0.791 | 0.617/0.780 | 0.625/0.790 | 0.635/0.803 |
BC | 0.521/0.703 | 0.509/0.731 | 0.532/0.705 | 0.584/0.777 | 0.643/0.861 | 0.648/0.872 | 0.637/0.830 | 0.679/0.884 |
DEF | 0.414/0.532 | 0.427/0.600 | 0.500/0.671 | 0.533/0.715 | 0.599/0.802 | 0.596/0.825 | 0.595/0.812 | 0.613/0.835 |
IPR | 0.496/0.681 | 0.468/0.698 | 0.515/0.717 | 0.535/0.729 | 0.583/0.787 | 0.593/0.794 | 0.601/0.810 | 0.602/0.817 |
IV | 0.551/0.709 | 0.468/0.699 | 0.524/0.697 | 0.600/0.770 | 0.632/0.821 | 0.640/0.819 | 0.649/0.808 | 0.666/0.833 |
LR | 0.370/0.649 | 0.290/0.671 | 0.425/0.766 | 0.514/0.765 | 0.516/0.797 | 0.579/0.843 | 0.614/0.850 | 0.576/0.834 |
MB | 0.458/0.551 | 0.456/0.594 | 0.519/0.648 | 0.580/0.739 | 0.590/0.762 | 0.637/0.797 | 0.646/0.807 | 0.672/0.845 |
OCC | 0.447/0.587 | 0.442/0.626 | 0.536/0.722 | 0.551/0.719 | 0.576/0.743 | 0.606/0.797 | 0.644/0.830 | 0.638/0.827 |
OPR | 0.466/0.637 | 0.447/0.665 | 0.530/0.728 | 0.542/0.729 | 0.584/0.785 | 0.619/0.836 | 0.632/0.838 | 0.632/0.850 |
OV | 0.383/0.481 | 0.418/0.540 | 0.495/0.662 | 0.464/0.601 | 0.521/0.721 | 0.585/0.766 | 0.613/0.815 | 0.600/0.777 |
SV | 0.468/0.638 | 0.400/0.642 | 0.498/0.713 | 0.562/0.746 | 0.571/0.769 | 0.632/0.842 | 0.636/0.836 | 0.634/0.843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Chen, L.; He, H.; Liu, J.; Zhang, W.; Xu, G. Second-Order Spatial-Temporal Correlation Filters for Visual Tracking. Mathematics 2022, 10, 684. https://doi.org/10.3390/math10050684
Yu Y, Chen L, He H, Liu J, Zhang W, Xu G. Second-Order Spatial-Temporal Correlation Filters for Visual Tracking. Mathematics. 2022; 10(5):684. https://doi.org/10.3390/math10050684
Chicago/Turabian StyleYu, Yufeng, Long Chen, Haoyang He, Jianhui Liu, Weipeng Zhang, and Guoxia Xu. 2022. "Second-Order Spatial-Temporal Correlation Filters for Visual Tracking" Mathematics 10, no. 5: 684. https://doi.org/10.3390/math10050684
APA StyleYu, Y., Chen, L., He, H., Liu, J., Zhang, W., & Xu, G. (2022). Second-Order Spatial-Temporal Correlation Filters for Visual Tracking. Mathematics, 10(5), 684. https://doi.org/10.3390/math10050684