A New Nonparametric Filled Function Method for Integer Programming Problems with Constraints
Abstract
:1. Introduction
- (i)
- is a strictly local maximizer of , and the basin of at becomes a part of a hill of at ;
- (ii)
- in the basin where is higher than , has no local minimizer;
- (iii)
- if has a basin lower than , then minimizing must be able to find its local minimizer in the line between x and in .
2. Assumptions and Definitions
- (i)
- is a strictly discrete local maximizer of ; and the basin of at becomes a part of a hill of at ;
- (ii)
- has no discrete local minimizer in set ;
- (iii)
- If is not a discrete global minimizer of , then , , and have the same discrete local minimizer in .
3. Transformation of the Original Problem
4. Nonparametric Filled Function and Its Analytical Properties
- (1)
- If , then
- (2)
- If , then
- (1).
- If , then .
- (2).
- If , then .
5. Filled Function Algorithm
Algorithm 1: (DSDA) |
|
6. Numerical Experiment
Algorithm 2: |
|
6.1. Test Function
6.2. Numerical Results
N | ||||||||
---|---|---|---|---|---|---|---|---|
1 | ours | 5 | 807 | 0.9520 | 4 | 48,861 | ||
5 | 807 | 2.9375 | 11 | 150,531 | ||||
5 | 807 | 3.4343 | 42 | 177,769 | ||||
5 | 807 | 4.9339 | 28 | 252,769 | ||||
5 | 807 | 1.7434 | 34 | 88,589 | ||||
[18] | 5 | 807 | 2.5070 | 4 | 116,365 | |||
5 | 807 | 5.0296 | 11 | 231,931 | ||||
5 | 807 | 14.1812 | 44 | 636,267 | ||||
5 | 807 | 10.8155 | 33 | 486,107 | ||||
5 | 807 | 11.1178 | 34 | 496,607 | ||||
2 | ours | 2 | 0 | 0.0095 | 1 | 245 | ||
2 | 0 | 0.0114 | 2 | 413 | ||||
2 | 0 | 0.0124 | 2 | 429 | ||||
2 | 0 | 0.0141 | 3 | 541 | ||||
2 | 0 | 0.0148 | 3 | 549 | ||||
2 | 0 | 0.0161 | 4 | 653 | ||||
2 | 0 | 0.0141 | 3 | 533 | ||||
2 | 0 | 0.0172 | 4 | 645 | ||||
2 | 0 | 0.0185 | 5 | 753 | ||||
[18] | 2 | 0 | 0.0162 | 2 | 418 | |||
2 | 0 | 0.0129 | 2 | 433 | ||||
2 | 0 | 0.0149 | 2 | 500 | ||||
2 | 0 | 0.0160 | 3 | 614 | ||||
2 | 0 | 0.0164 | 3 | 608 | ||||
2 | 0 | 0.0175 | 4 | 710 | ||||
2 | 0 | 0.0154 | 3 | 582 | ||||
2 | 0 | 0.0180 | 4 | 675 | ||||
2 | 0 | 0.0191 | 5 | 777 | ||||
3 | ours | 2 | 0.1396 | 3 | 7093 | |||
2 | 0.1378 | 2 | 7127 | |||||
[18] | 2 | 0.1808 | 3 | 10,205 | ||||
2 | 0.1444 | 2 | 7127 | |||||
4 | ours | 4 | 0 | 0.0725 | 2 | 4131 | ||
4 | 0 | 0.0538 | 2 | 2907 | ||||
4 | 0 | 0.0736 | 2 | 4131 | ||||
4 | 0 | 0.0575 | 2 | 3843 | ||||
4 | 0 | 0.0456 | 2 | 2731 | ||||
4 | 0 | 0.0392 | 1 | 2585 | ||||
[18] | 2 | 0 | 0.0777 | 2 | 4439 | |||
4 | 0 | 0.0725 | 2 | 4599 | ||||
4 | 0 | 0.0715 | 2 | 4439 | ||||
4 | 0 | 0.0560 | 2 | 4151 | ||||
4 | 0 | 0.0653 | 2 | 4423 | ||||
4 | 0 | 0.0343 | 1 | 2585 | ||||
5 | ours | 2 | 3 | 1.3741 | 2 | 84,013 | ||
2 | 3 | 0.8289 | 2 | 72,013 | ||||
2 | 3 | 1.3745 | 1 | 84,013 | ||||
2 | 3 | 0.8986 | 2 | 74,013 | ||||
2 | 3 | 1.0622 | 1 | 78,013 | ||||
2 | 3 | 0.9923 | 1 | 76,013 | ||||
[18] | 2 | 3 | 1.5708 | 2 | 84,013 | |||
2 | 3 | 0.9917 | 2 | 71,922 | ||||
2 | 3 | 1.5720 | 1 | 84,077 | ||||
2 | 3 | 1.1065 | 2 | 74,103 | ||||
2 | 3 | 1.2851 | 1 | 78,031 | ||||
2 | 3 | 1.1790 | 1 | 76,101 |
N | ||||||||
---|---|---|---|---|---|---|---|---|
6 | ours | 3 | −1,560,310,784 | 0.7027 | 1 | 35,971 | ||
[18] | 3 | −1,560,310,784 | 0.9201 | 1 | 46,178 | |||
7 | ours | 4 | 0.3793 | 1 | 5869 | |||
4 | 0.1189 | 1 | 5509 | |||||
4 | 0.1888 | 2 | 8949 | |||||
[18] | 4 | 0.1429 | 1 | 5968 | ||||
4 | 0.1228 | 1 | 5670 | |||||
4 | 0.2517 | 3 | 11,930 | |||||
8 | ours | 2 | 0.0576 | 5 | 2421 | |||
2 | 0.0655 | 5 | 2620 | |||||
2 | 0.0755 | 5 | 2819 | |||||
[18] | 2 | 0.0621 | 5 | 2730 | ||||
2 | − | − | − | − | − | |||
2 | 0.0840 | 5 | 3132 | |||||
9 | ours | 6 | 0.2280 | 5 | 11,263 | |||
6 | 0.1689 | 3 | 8639 | |||||
6 | 0.1304 | 1 | 6589 | |||||
[18] | 6 | 0.3489 | 5 | 16,037 | ||||
6 | 0.2197 | 3 | 10,017 | |||||
6 | 0.2649 | 3 | 12,153 | |||||
10 | ours | 4 | 0 | 0.1000 | 5 | 5761 | ||
4 | 0 | 0.0448 | 2 | 2667 | ||||
4 | 0 | 0.1169 | 6 | 7969 | ||||
4 | 0 | 0.0542 | 2 | 2827 | ||||
[18] | 4 | 0 | 0.1075 | 5 | 6761 | |||
4 | 0 | 0.0707 | 2 | 4615 | ||||
4 | 0 | 0.1245 | 6 | 7969 | ||||
4 | 0 | 0.0756 | 2 | 4775 | ||||
11 | ours | 2 | 0 | 1.0960 | 5 | 742,921 | ||
2 | 0 | 12.5392 | 5 | 730,377 | ||||
2 | 0 | 4.0511 | 4 | 244,019 | ||||
2 | 0 | 3.8061 | 4 | 237,587 | ||||
2 | 0 | 3.7028 | 4 | 237,579 | ||||
2 | 0 | 3.8508 | 4 | 240,019 | ||||
[18] | 2 | 0 | 15.7839 | 5 | 892,789 | |||
2 | 0 | 15.1406 | 5 | 880,245 | ||||
2 | 0 | 6.0974 | 4 | 470,075 | ||||
2 | 0 | 5.8505 | 4 | 463,643 | ||||
2 | 0 | 5.8602 | 4 | 463,635 | ||||
2 | 0 | 5.9400 | 4 | 466,075 |
N | ||||||||
---|---|---|---|---|---|---|---|---|
12 | ours | 25 | 0 | 7.1418 | 1 | 258,951 | ||
25 | 0 | 13.4385 | 2 | 496,651 | ||||
25 | 0 | 14.1907 | 2 | 495,451 | ||||
25 | 0 | 8.8529 | 1 | 318,901 | ||||
[18] | 25 | 0 | 7.4281 | 1 | 269,332 | |||
25 | 0 | 15.7155 | 2 | 580,802 | ||||
25 | 0 | 14.0939 | 2 | 495,451 | ||||
25 | 0 | 9.1232 | 1 | 328,637 | ||||
ours | 50 | 0 | 59.5855 | 1 | 2,035,301 | |||
50 | 0 | 113.7989 | 2 | 3,985,901 | ||||
50 | 0 | 114.7591 | 2 | 3,980,901 | ||||
50 | 0 | 73.8136 | 1 | 2,525,301 | ||||
[18] | 50 | 0 | 62.4965 | 1 | 2,134,733 | |||
50 | 0 | 116.8327 | 2 | 4,092,162 | ||||
50 | 0 | 116.1587 | 2 | 4,029,451 | ||||
50 | 0 | 75.7253 | 1 | 2,590,704 | ||||
ours | 100 | 0 | 515.5150 | 1 | 16,140,600 | |||
100 | 0 | 996.9730 | 2 | 31,941,801 | ||||
100 | 0 | 983.3028 | 2 | 31,921,800 | ||||
100 | 0 | 637.1618 | 1 | 20,100,602 | ||||
[18] | 100 | 0 | 523.2555 | 1 | 16,382,953 | |||
100 | 0 | 1026.1101 | 2 | 32,874,946 | ||||
100 | 0 | 996.5619 | 2 | 32,352,242 | ||||
100 | − | − | − | − | − | |||
13 | ours | 25 | 0 | 7.1793 | 1 | 240,873 | ||
25 | 0 | 14.0434 | 2 | 443,610 | ||||
25 | 0 | 12.7954 | 2 | 495,453 | ||||
25 | 0 | 8.5232 | 1 | 318,902 | ||||
[18] | 25 | 0 | 7.7181 | 1 | 258,951 | |||
25 | 0 | 15.7225 | 2 | 496,652 | ||||
25 | 0 | 13.8766 | 2 | 537,318 | ||||
25 | 0 | 9.3565 | 1 | 350,080 | ||||
ours | 50 | 0 | 58.2227 | 1 | 2,035,301 | |||
50 | 0 | 134.6884 | 2 | 4,931,800 | ||||
50 | 0 | 108.2429 | 2 | 3,980,891 | ||||
50 | 0 | 70.6625 | 1 | 2,525,306 | ||||
[18] | 50 | 0 | 62.0151 | 1 | 2,185,716 | |||
50 | 0 | 117.6758 | 2 | 3,985,901 | ||||
50 | 0 | 117.5395 | 2 | 4,322,674 | ||||
50 | 0 | 76.3166 | 1 | 2,727,364 | ||||
ours | 100 | 0 | 483.2232 | 1 | 16,140,601 | |||
100 | 0 | 994.5747 | 2 | 39,723,601 | ||||
100 | 0 | 927.8696 | 2 | 31,921,801 | ||||
100 | 0 | 594.7694 | 1 | 20,100,601 | ||||
[18] | 100 | 0 | 516.1914 | 1 | 17,241,803 | |||
100 | 0 | 1555.5000 | 2 | 62,127,119 | ||||
100 | 0 | 995.4259 | 2 | 34,245,962 | ||||
100 | − | − | − | − | − |
N | |||||||
---|---|---|---|---|---|---|---|
10 | 4 | 0 | 0.0500 | 3 | 3023 | ||
4 | 0 | 0.0362 | 1 | 2393 | |||
4 | 0 | 0.4176 | 7 | 8947 | |||
4 | 0 | 0.0730 | 3 | 4539 | |||
4 | 0 | 0.0548 | 3 | 3201 | |||
4 | 0 | 0.0462 | 3 | 3041 | |||
12 | 25 | 0 | 8.5956 | 2 | 312,651 | ||
25 | 0 | 9.3240 | 1 | 493,051 | |||
25 | 0 | 8.6237 | 3 | 318,901 | |||
25 | 0 | 7.0355 | 1 | 315,151 | |||
25 | 0 | 11.7225 | 2 | 611,549 | |||
25 | 0 | 12.7954 | 2 | 613,949 |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
The number of the problem | |
Algorithm type | |
Number of decision variables | |
CPU running time | |
The number of iterations when the algorithm terminates | |
N | The number of function evaluations of and before termination |
− | Global optimization failed |
References
- Ge, R.P. A filled function method for finding a global minimizer of a function of several variables. Math. Program. 1990, 46, 191–204. [Google Scholar]
- Ge, R.P.; Huang, C.B. A continuous approach to nonlinear integer programming. Appl. Math. Comput. 1989, 34, 39–60. [Google Scholar] [CrossRef]
- Juan, D.M.; Hugo, D.S. An augmented filled function for global nonlinear integer optimization. TOP 2020, 28, 689–704. [Google Scholar]
- Levy, A.V.; Montalvo, A. The Tunneling Algorithm for the Global Minimization of Functions. J. Korean Soc. Ind. Appl. 1985, 6, 15–29. [Google Scholar] [CrossRef]
- Lee, W.J.; Cabot, A.V.; Venkataramanan, M.A. A branch and bound algorithm for solving separable convex integer programming problems. Comput. Oper. Res. 1994, 21, 1011–1024. [Google Scholar] [CrossRef]
- Borodin, L.P.; Konyagin, S.V. Projection greedy algorithm. Math. Notes 2021, 110, 16–25. [Google Scholar] [CrossRef]
- Rosen, S.L.; Harmonosky, C.M. An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Comput. Oper. Res. 2005, 32, 343–358. [Google Scholar] [CrossRef]
- Turkkan, N. Discrete optimization of structures using a floating-point genetic algorithm. Fourth International Conference on Modelling. In Proceedings of the Annual Conference of the Canadian Society for Civil Engineering, Moncton, NB, Canada, 4–7 June 2003. [Google Scholar]
- Laurent, M.; Pascal, V.H. A simple tabu search for warehouse location. Eur. J. Oper. Res. 2004, 157, 576–591. [Google Scholar]
- Zhu, W.X.; Zhang, L.S. An approximate algorithm for nonlinear integer programming. Eur. J. Oper. Res. 1994, 74, 170–178. [Google Scholar] [CrossRef]
- Gu, Y.H.; Wu, Z.Y. A new filled function method for nonlinear integer programming problem. Appl. Math. Comput. 2006, 173, 938–950. [Google Scholar] [CrossRef]
- Ng, C.K.; Zhang, L.S.; Li, D.; Tian, W.W. Discrete filled function method for discrete global optimization. Comput. Optim. Appl. 2005, 31, 87–115. [Google Scholar] [CrossRef]
- Yang, Y.J.; Liang, Y.M. A new discrete filled function algorithm for discrete global optimization. J. Cumput. Optim. 2007, 202, 280–291. [Google Scholar]
- Wu, Z.Y.; Mammadov, M.; Bai, F.S. A Filled Function Method for Box-constrained System of Nonlinear Equations. In Proceedings of the APCCAS 2006—2006 IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 4–7 December 2006; pp. 622–625. [Google Scholar]
- Yang, Y.J.; Wu, Z.Y.; Bai, F. A Filled Function Method For Constrained Nonlinear Integer Programming. J. Ind. Manag. Optim. 2008, 4, 353–362. [Google Scholar] [CrossRef]
- Lin, Y.J.; Yang, Y.J. A new filled function method for constrained nonlinear equations. Appl. Math. Comput. 2012, 219, 3100–3112. [Google Scholar] [CrossRef]
- Yuan, L.Y.; Wan, Z.P.; Tang, Q.H.; Zheng, Y. A class of parameter-free filled functions for box-constrained system of nonlinear equations. Acta Math. Appl. Sin. 2016, 32, 355–364. [Google Scholar] [CrossRef]
- Lin, H.W.; Wang, Y.P.; Wang, X.L. An auxiliary function method for global minimization in integer programming. Math. Probl. Eng. 2011, 2, 402437. [Google Scholar] [CrossRef]
- Woon, S.F.; Rehbock, V. A critical review of discrete filled function methods in solving nonlinear discrete optimization problems. Appl. Math. Comput. 2010, 217, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Xu, Y.Q.; Zhou, Y. A class of exact penalty functions and penalty algorithms for nonsmooth constrained optimization problems. J. Glob. Optim. 2020, 76, 745–768. [Google Scholar] [CrossRef]
- Ng, C.K.; Li, D.; Zhang, L.S. Discrete global descent method for discrete global optimization and nonlinear integer programming. J. Glob. Optim. 2007, 37, 357–379. [Google Scholar] [CrossRef]
- Pirlot, M. General local search methods. Eur. J. Oper. Res. 1996, 92, 493–511. [Google Scholar] [CrossRef]
- Shang, Y.L.; Zhang, L.S. Finding discrete global minima with a filled function for integer programming. Eur. J. Oper. Res. 2008, 189, 31–40. [Google Scholar] [CrossRef]
- Yang, Y.J.; He, M.L.; Gao, Y.L. Discrete Global Optimization Problems with a Modified Discrete Filled Function. J. Oper. Res. Soc. China 2015, 3, 297–315. [Google Scholar] [CrossRef]
- Mohan, C.; Nguyen, H.T. A controlled random search technique incorporating the simulated annealing concept for solving integer and mixed integer global optimization problems. Comput. Optim. Appl. 1999, 14, 103–132. [Google Scholar] [CrossRef]
- Schittkowski, K. More Test Examples for Nonlinear Programming Codes; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Conley, W. Computer Optimization Techniques; Petrocelli Books Inc.: New York, NY, USA, 1980. [Google Scholar]
- Moustaid, M.B.; Rikouane, A.; Dali, I.; Laghdir, M. Sequential approximate weak optimality conditions for multiobjective fractional programming problems via sequential calculus rules for the Brøndsted-Rockafellar approximate subdifferential. Rend. Circ. Mat. Palerm. 2021, 1–18. [Google Scholar] [CrossRef]
N | ||||||||
---|---|---|---|---|---|---|---|---|
Ours | A | B | C | D | ||||
4 | 4 | 0 | 3388 | 9065 | 6472 | 37,906 | 18,936 | |
5 | 2 | 3 | 78,041 | 266,455 | 173,605 | 1,218,432 | 663,573 | |
10 | 4 | 0 | 4024 | 9735 | 6927 | 39,650 | 19,252 | |
11 | 2 | 0 | 405,417 | 1,970,575 | 1,145,488 | 245,235 | 2,826,691 | |
12 | 25 | 0 | 396,936 | 1,173,742 | 646,390 | 3,558,639 | 1,732,339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Gao, Y.; Zhang, B.; Zuo, W. A New Nonparametric Filled Function Method for Integer Programming Problems with Constraints. Mathematics 2022, 10, 734. https://doi.org/10.3390/math10050734
Ma S, Gao Y, Zhang B, Zuo W. A New Nonparametric Filled Function Method for Integer Programming Problems with Constraints. Mathematics. 2022; 10(5):734. https://doi.org/10.3390/math10050734
Chicago/Turabian StyleMa, Suxia, Yuelin Gao, Bo Zhang, and Wenlu Zuo. 2022. "A New Nonparametric Filled Function Method for Integer Programming Problems with Constraints" Mathematics 10, no. 5: 734. https://doi.org/10.3390/math10050734
APA StyleMa, S., Gao, Y., Zhang, B., & Zuo, W. (2022). A New Nonparametric Filled Function Method for Integer Programming Problems with Constraints. Mathematics, 10(5), 734. https://doi.org/10.3390/math10050734