Improved Hille Oscillation Criteria for Nonlinear Functional Dynamic Equations of Third-Order
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (A)
- either,or,If , then tends to zero eventually.
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: Berlin, Germany, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA USA, 2003. [Google Scholar]
- Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A.; Saker, S.H. Hille and Nehari type criteria for third-order dynamic equations. J. Math. Anal. Appl. 2007, 329, 112–131. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H. Oscillation of third-order functional dynamic equations on time scales. Sci. China Math. 2011, 54, 2597–2614. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z. Asymptotic properties of solutions of certain third-order dynamic equations. J. Comput. Appl. Math. 2012, 236, 2354–2366. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Hille and Nehari type criteria for third order delay dynamic equations. J. Differ. Equ. Appl. 2013, 19, 1563–1579. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hassan, T.S.; Mohammed, W. Oscillation criteria for third-order functional half-linear dynamic equations. Adv. Differ. Equ. 2017, 2017, 111. [Google Scholar]
- Hassan, T.S.; Almatroud, A.O.; Al-Sawalha, M.M.; Odinaev, I. Asymptotics and Hille-type results for dynamic equations of third order with deviating arguments. Symmetry 2021, 13, 2007. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. Oscillatory and asymptotic properties of third-order quasilinear delay differential equations. J. Inequalities Appl. 2019, 2019, 23. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L. Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pacific J. Math. 1976, 64, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation of third-order nonlinear functional dynamic equations on time scales. Differ. Eq. Dynam. Syst. 2010, 18, 199–227. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved Oscillation Criteria for 2nd-Order Neutral Differential Equations with Distributed Deviating Arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hassan, T.S. Oscillation of third-order nonlinear delay dynamic equations on time scales. Math. Comput. Model. 2009, 49, 1573–1586. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Abdel Menaem, A. Improved oscillation results for functional nonlinear dynamic equations of second order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Han, Z.; Li, T.; Sun, S.; Zhang, M. Oscillation behavior of solutions of third-order nonlinear delay dynamic equations on time scales. Commun. Korean Math. Soc. 2011, 26, 499–513. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Han, Z.; Sun, S.; Zhao, Y. Oscillation results for third-order nonlinear delay dynamic equations on time scales. Bull. Malays. Math. Sci. Soc. 2011, 34, 639–648. [Google Scholar]
- Li, T.; Han, Z.; Sun, Y.; Zhao, Y. Asymptotic behavior of solutions for third-order half-linear delay dynamic equations on time scales. J. Appl. Math. Comput. 2011, 36, 333–346. [Google Scholar] [CrossRef]
- Hovhannisy, G. On oscillations of solutions of third-order dynamic equation. Abstr. Appl. Anal. 2012, 2012, 715981. [Google Scholar]
- Wintner, A. A criterion of oscillatory stability. Quart. Appl. Math. 1949, 7, 115–117. [Google Scholar] [CrossRef] [Green Version]
- Wintner, A. On the nonexistence of conjugate points. Am. J. Math. 1951, 73, 368–380. [Google Scholar] [CrossRef]
- Senel, M.T. Behavior of solutions of a third-order dynamic equation on time scales. Senel. J. Inequal. Appl. 2013, 2013, 47. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Han, Z.; Sun, Y.; Pan, Y. Oscillation theorems for certain third-order nonlinear delay dynamic equations on time scales. Electron. J. Qual. Theory Diff. Equ. 2011, 75, 1–14. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Q. Asymptotic behavior of solutions of third-order dynamic equations on time scales. J. Comput. Appl. Math. 2009, 255, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Hassan, T.S.; El-Matary, B.M. Oscillation criteria for third order nonlinear neutral differential equation. PLOMS Math. 2021, 1, 12. [Google Scholar]
- Hassan, T.S.; Kong, Q. Asymptotic behavior of third order functional dynamic equations with γ-Laplacian and nonlinearities given by Riemann-Stieltjes integrals. Electron. J. Qual. Theory Differ. Equ. 2014, 40, 21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Ramadan, R.A.; Alsheekhhussain, Z.; Khedr, A.Y.; Menaem, A.A.; Odinaev, I. Improved Hille Oscillation Criteria for Nonlinear Functional Dynamic Equations of Third-Order. Mathematics 2022, 10, 1078. https://doi.org/10.3390/math10071078
Hassan TS, Ramadan RA, Alsheekhhussain Z, Khedr AY, Menaem AA, Odinaev I. Improved Hille Oscillation Criteria for Nonlinear Functional Dynamic Equations of Third-Order. Mathematics. 2022; 10(7):1078. https://doi.org/10.3390/math10071078
Chicago/Turabian StyleHassan, Taher S., Rabie A. Ramadan, Zainab Alsheekhhussain, Ahmed Y. Khedr, Amir Abdel Menaem, and Ismoil Odinaev. 2022. "Improved Hille Oscillation Criteria for Nonlinear Functional Dynamic Equations of Third-Order" Mathematics 10, no. 7: 1078. https://doi.org/10.3390/math10071078
APA StyleHassan, T. S., Ramadan, R. A., Alsheekhhussain, Z., Khedr, A. Y., Menaem, A. A., & Odinaev, I. (2022). Improved Hille Oscillation Criteria for Nonlinear Functional Dynamic Equations of Third-Order. Mathematics, 10(7), 1078. https://doi.org/10.3390/math10071078