Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces
Abstract
:1. Introduction
2. Definitions and Preliminaries
3. Boundedness of Operators on Herz Spaces
3.1. Vector-Valued Intrinsic Square Function
3.2. Intrinsic Square Function
3.3. Commutator of the Intrinsic Square Function
3.4. Vector-Valued Inequalities for Sublinear Operators
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wilson, M. Weighted Littlewood-Paley Theory and Exponential-Square Integrability; Lecture Notes in Math 1924; Springer: Berlin, Germany, 2007. [Google Scholar]
- Wilson, M. The intrinsic square function. Rev. Math. Iberoam 2007, 23, 771–791. [Google Scholar] [CrossRef] [Green Version]
- Lerner, A. Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 2011, 226, 3912–3926. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, H.P. Weak type estimates of intrinsic square functions on the weighted Hardy spaces. Arch. Math. 2011, 97, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Intrinsic square functions on the weighted Morrey spaces. J. Math. Anal. Appl. 2012, 396, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Boundedness of intrinsic square functions on the weighted weak Hardy spaces Integr. Equ. Oper. Theory 2013, 75, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. The boundedness of intrinsic square functions on the weighted Herz spaces. J. Funct. Spaces 2014, 2014, 274521. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Nakai, E.; Yang, D.; Zhang, J. Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces. Banach. J. Math. Anal. 2014, 8, 221–268. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Weighted estimates for vector-valued intrinsic square functions and commutators in the Morrey-Type spaces. Acta Math. Vietnam. 2021, 1–35. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, D. Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces. Trans. Am. Math. Soc. 2014, 5, 3225–3256. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, D. Musielak-Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 2013, 406, 307–322. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.P. The intrinsic square function characterizations of weighted Hardy spaces. Ill. J. Math. 2012, 56, 367–381. [Google Scholar] [CrossRef]
- Wang, H. Boundedness of vector-valued intrinsic square functions in Morrey type spaces. J. Funct. Spaces 2014, 2014, 923680. [Google Scholar] [CrossRef] [Green Version]
- Guliyev, V.S.; Omarova, M.N. Higher order commutators of vector-valued intrinsic square functions on vector-valued generalized weighted Morrey spaces. J. Math. 2014, 4, 64–85. [Google Scholar]
- Izuki, M.; Noi, T. An intrinsic square function on weighted Herz spaces with variable exponent. J. Math. Inequalities 2017, 11, 799–816. [Google Scholar] [CrossRef]
- Herz, C.S. Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 1967, 18, 283–323. [Google Scholar] [CrossRef]
- Ragusa, M.A. Homogeneous Herz spaces and regularity results. Nonlinear Anal. Theory Methods Appl. 2009, 71, e1909–e1914. [Google Scholar] [CrossRef]
- Ragusa, M.A. Parabolic Herz spaces and their applications. Appl. Math. Lett. 2012, 25, 1270–1273. [Google Scholar] [CrossRef] [Green Version]
- Abdalrhman, O.; Abdalmonem, A.; Tao, S. Boundedness of Calderón-Zygmund operator and their commutator on Herz spaces with variable exponents. Appl. Math. 2017, 8, 428–443. [Google Scholar] [CrossRef] [Green Version]
- Scapellato, A. Homogeneous Herz spaces with variable exponents and regularity results. Electron. J. Qual. Theory Differ Equ. 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Scapellato, A. Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Bound. Value Probl. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.; Fiorenza, A. Variable Lebesgue Spaces. Foundations and Harmonic Analysis; Appl. Numer. Harmon. Anal.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Cruz-Uribe, D.; Fiorenza, A.; Neugebauer, C. The maximal function on variable Lp spaces. Ann. Acad. Sci. Fenn. Math. 2003, 28, 223–238. [Google Scholar]
- Nekvinda, A. Hardy-littlewood maximal operator in Lp(x)(Rn). Math. Ineq. Appl. 2004, 7, 255–265. [Google Scholar]
- Izuki, M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 2010, 2, 461–472. [Google Scholar] [CrossRef]
- Izuki, M. Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 2010, 59, 199–213. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; 2017 of Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Rùžička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; 1748; Springer: Berlin, Germany, 2000. [Google Scholar]
- Harjulehto, P.; Hästö, P.; Lê, Ú.V.; Nuortio, M. Overview of differential equations with non-standard growth. Nonlinear Anal. 2010, 72, 4551–4574. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Chen, J. Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent. Mathematics 2021, 9, 498. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Chen, J. Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces. Acta Math. Sci. 2021, 41, 164–176. [Google Scholar] [CrossRef]
- Wang, L.; Tao, S. Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponents. Turk. J. Math. 2016, 40, 122–145. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tao, S. θ-type Calderón-Zygmund Operators and Commutators in Variable Exponents Herz space. Open Math. 2018, 16, 1607–1620. [Google Scholar] [CrossRef]
- Cai, J.; Dong, B.; Tang, C. Boundedness of Rough Singular Integral Operators on Homogeneous Herz Spaces with Variable Exponents. J. Math. Study 2020, 53, 297–315. [Google Scholar] [CrossRef]
- Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 2012, 394, 781–795. [Google Scholar] [CrossRef]
- Zhuo, C.; Yang, D.; Liang, Y. Intrinsic square function characterizations of Hardy spaces with vriable exponents. Bull. Malays. Math. Sci. Soc. 2016, 39, 1541–1577. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.P. Intrinsic Square Functions on Morrey and Block Spaces with Variable Exponents. Bull. Malays. Math. Sci. Soc. 2017, 40, 995–1010. [Google Scholar] [CrossRef]
- Wang, L. Boundedness of the commutator of the intrinsic square function in variable exponent spaces. J. Korean Math. Soc. 2018, 55, 939–962. [Google Scholar]
- Saibi, K. Intrinsic square function characterizations of variable Hardy-Lorentz spaces. J. Funct. Spaces 2020, 10, 2681719. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Yang, D.; Yuan, W. Intrinsic square function characterizations of several Hardy-type spaces—A survey. Anal. Theory Appl. 2021, 37, 426–464. [Google Scholar]
- Almeida, A.; Hasanov J., S. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 2008, 15, 195–208. [Google Scholar] [CrossRef]
- Izuki, M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas. Mat. 2010, 45, 475–503. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, Y.P. Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents. Czechoslov. Math. J. 2014, 64, 969–987. [Google Scholar] [CrossRef] [Green Version]
- Izuki, M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 2009, 13, 243–253. [Google Scholar]
- Ho, K.P. Singular integral operators and sublinear operators on Hardy local Morrey spaces with variable exponents. Bull. Sci. Math. 2021, 171, 103033. [Google Scholar] [CrossRef]
- Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, O.A.; Abidin, M.Z. Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces. Mathematics 2022, 10, 1168. https://doi.org/10.3390/math10071168
Omer OA, Abidin MZ. Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces. Mathematics. 2022; 10(7):1168. https://doi.org/10.3390/math10071168
Chicago/Turabian StyleOmer, Omer Abdalrhman, and Muhammad Zainul Abidin. 2022. "Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces" Mathematics 10, no. 7: 1168. https://doi.org/10.3390/math10071168
APA StyleOmer, O. A., & Abidin, M. Z. (2022). Boundedness of the Vector-Valued Intrinsic Square Functions on Variable Exponents Herz Spaces. Mathematics, 10(7), 1168. https://doi.org/10.3390/math10071168