Double Image Encryption Scheme Based on Compressive Sensing and Double Random Phase Encoding
Abstract
:1. Introduction
2. Related Works
3. The Proposed Scheme
3.1. The Framework of Proposed Scheme
3.2. Compresive Sampling and DRPE Encryption
3.3. Decryption Process
4. Experiments and Analysis
4.1. Encryption and Decryption Effect Evaluation
4.2. Histogram Analysis
4.3. Key Space Analysis
4.4. Correlation Analysis
4.5. Authentication Performance Analysis
4.6. Robustness Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Wakin, M.B. An Introduction to Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef] [Green Version]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.; Nowak, R.D.; Wright, S.J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, R. Exact Reconstruction of Sparse Signals via Nonconvex Minimization. IEEE Signal Process. Lett. 2007, 14, 707–710. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y. Image encryption using 2D logistic-adjusted-sine map. Inf. Sci. 2016, 339, 237–253. [Google Scholar] [CrossRef]
- Wang, X.; Teng, L.; Qin, X. A novel color image encryption algorithm based on chaos. Signal Process. 2012, 92, 1101–1108. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, D. Self-adaptive permutation and combined global diffusion for chaotic color image encryption. AEU Int. J. Electron. Commun. 2014, 68, 361–368. [Google Scholar] [CrossRef]
- Lui, O.-Y.; Wong, K.-W.; Chen, J.; Zhou, J. Chaos-based joint compression and encryption algorithm for generating variable length ciphertext. Appl. Soft Comput. 2012, 12, 125–132. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Pun, C.M.; Chen, C.L.P. 2D Sine Logistic modulation map for image encryption. Inf. Sci. 2014, 297, 80–94. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Hu, X.; Liu, Y.; Wong, K.-W.; Gan, J. A chaotic image encryption scheme owning temp-value feedback. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3653–3659. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.; Zhang, Y.; Fang, Z.; Chen, J.-X. Infrared target-based selective encryption by chaotic maps. Opt. Commun. 2015, 341, 131–139. [Google Scholar] [CrossRef]
- Chen, J.-X.; Zhu, Z.-L.; Liu, Z.; Fu, C.; Zhang, L.-B.; Yu, H. A novel double-image encryption scheme based on cross-image pixel scrambling in gyrator domains. Opt. Express 2014, 22, 7349–7361. [Google Scholar] [CrossRef]
- Chen, J.-X.; Zhu, Z.-L.; Fu, C.; Zhang, L.-B.; Zhang, Y. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding. J. Opt. 2014, 16, 125403. [Google Scholar] [CrossRef]
- Chen, J.-X.; Zhu, Z.-L.; Fu, C.; Zhang, L.-B.; Yu, H. Analysis and improvement of a double-image encryption scheme using pixel scrambling technique in gyrator domains. Opt. Lasers Eng. 2015, 66, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, D.; Wen, W.; Tian, Y. Edge-based lightweight image encryption using chaos-based reversible hidden transform and multiple-order discrete fractional cosine transform. Opt. Laser Technol. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Refregier, P.; Javidi, B. Optical image encryption using inputplane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767–769. [Google Scholar] [CrossRef]
- Unnikrishnan, G.; Joseph, J.; Singh, K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett. 2000, 25, 887–889. [Google Scholar] [CrossRef]
- Situ, G.; Zhang, J. Double random-phase encoding in the Fresnel domain. Opt. Lett. 2004, 29, 1584–1586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, B. Optical image encryption based on interference. Opt. Lett. 2008, 33, 2443–2445. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Peng, X. Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 2010, 35, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Javidi, B. Optical encryption using a joint transform correlator architecture. Opt. Eng. 2000, 39, 2031–2035. [Google Scholar]
- Lu, P.; Xu, Z.; Lu, X.; Liu, X. Digital image information encryption based on Compressive Sensing and double random-phase encoding technique. Optik 2013, 124, 2514–2518. [Google Scholar] [CrossRef]
- Rawat, N.; Kumar, R.; Lee, B. Implementing compressive fractional Fourier transformation with iterative kernel steering re-gression in double random phase encoding. Optik 2014, 125, 5414–5417. [Google Scholar] [CrossRef]
- Deepan, B.; Quan, C.; Wang, Y.; Tay, C.J. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Appl. Opt. 2014, 53, 4539–4547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.Y. Exploiting random convolution and random subsampling for image encryption and compression. Electron. Lett. 2015, 51, 1572–1574. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Li, Y.; Qin, Q.; Li, G.; Tan, Z.; Wang, M.; Yan, F. Image Compression-Encryption Scheme via Fiber Specklegram-Based Compressive Sensing and Double Random Phase Encoding. IEEE Photon. J. 2020, 12, 7102311. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, M.; Tong, X.J.; Wang, Z. Image compression-encryption algorithm based on 2D compressive sensing and dou-ble random phase encoding. J. Phys. Conf. Ser. 2020, 1684, 012123. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.; Wang, X. A novel 1D chaotic system for image encryption, authentication and compression in cloud. Multimed. Tools Appl. 2020, 80, 8721–8758. [Google Scholar] [CrossRef]
- Kumar, B.V.K.V.; Hassebrook, L. Performance measures for correlation filters. Appl. Opt. 1990, 29, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.; Li, S. Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
Histogram 1 | Histogram 2 | Euclidean Distance |
---|---|---|
Encrypted image 1 | Encrypted image 2 | 0.0054 |
Encrypted image 1 | Encrypted image 3 | 0.0057 |
Encrypted image 1 | Encrypted image 4 | 0.0056 |
Encrypted image 2 | Encrypted image 3 | 0.0055 |
Encrypted image 2 | Encrypted image 4 | 0.0054 |
Encrypted image 3 | Encrypted image 4 | 0.0059 |
Image | Plaintext Image | Ciphertext Image | ||||
---|---|---|---|---|---|---|
Horizontal Direction | Vertical Direction | Diagonal Direction | Horizontal Direction | Vertical Direction | Diagonal Direction | |
Lady | 0.9840 | 0.9903 | 0.9825 | −0.0004 | 0.0266 | 0.0081 |
Woman | 0.9914 | 0.9926 | 0.9859 | |||
Milkdrop | 0.9723 | 0.9843 | 0.9602 | −0.0026 | 0.0298 | 0.0047 |
Airplane | 0.9571 | 0.9366 | 0.8927 | |||
Woman | 0.9914 | 0.9926 | 0.9859 | −0.0001 | 0.0272 | 0.0043 |
Milkdrop | 0.9723 | 0.9843 | 0.9602 | |||
Airplane | 0.9571 | 0.9366 | 0.8927 | −0.0034 | 0.0259 | 0.0029 |
Lady | 0.9840 | 0.9903 | 0.9825 |
Group | Image | PCE |
---|---|---|
Group 1 | Lady | 0.002625 |
Woman | 0.003823 | |
Group 2 | Milkdrop | 0.004608 |
Airplane | 0.000711 | |
Group 3 | Woman | 0.002654 |
Milkdrop | 0.004656 | |
Group 4 | Airplane | 0.000522 |
Lady | 0.003023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Xiao, D. Double Image Encryption Scheme Based on Compressive Sensing and Double Random Phase Encoding. Mathematics 2022, 10, 1242. https://doi.org/10.3390/math10081242
Zhang R, Xiao D. Double Image Encryption Scheme Based on Compressive Sensing and Double Random Phase Encoding. Mathematics. 2022; 10(8):1242. https://doi.org/10.3390/math10081242
Chicago/Turabian StyleZhang, Rui, and Di Xiao. 2022. "Double Image Encryption Scheme Based on Compressive Sensing and Double Random Phase Encoding" Mathematics 10, no. 8: 1242. https://doi.org/10.3390/math10081242
APA StyleZhang, R., & Xiao, D. (2022). Double Image Encryption Scheme Based on Compressive Sensing and Double Random Phase Encoding. Mathematics, 10(8), 1242. https://doi.org/10.3390/math10081242