Meanings Expressed by Primary Schoolchildren When Solving a Partitioning Task
Abstract
:1. Introduction
2. Meaning in Mathematics Classroom Content
2.1. Conceptual Structure
2.2. Representation Systems
2.3. Sense
3. Methodology
Data Analysis
4. Results
4.1. Conceptual Structure: Strategies
4.2. Conceptual Structure: Contents
4.3. Representation Systems
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosch, M.A.; Castro, E.; Segovia, I. El pensamiento multiplicativo en los primeros niveles. Una investigación en curso. PNA 2007, 1, 179–190. [Google Scholar]
- Steffe, L.P. A new hypothesis concerning children’s fractional knowledge. J. Math. Behav. 2001, 20, 267–307. [Google Scholar] [CrossRef]
- Charles, K.; Nason, R. Young children’s partitioning strategies. Educ. Stud. Math. 2000, 43, 191–221. [Google Scholar] [CrossRef]
- De León, H.J. Procedimientos de niños de primaria en la solución de problemas de reparto. Relime 1998, 1, 5–28. [Google Scholar]
- Olguín, E.M.; Valdemoros, M.E. El reparto con fracciones mediante “escenarios didácticos”. In Acta Latinoaméricana de Matemática Educativa; Flores, R., Ed.; Comité Latinoamericano de Matemática Educativa A.C.: Mexico City, Mexico, 2012; pp. 583–592. [Google Scholar]
- Ramírez-Uclés, R.; Castro-Rodríguez, E.; Piñeiro, J.L.; Ruiz-Hidalgo, J.F. What makes a task a problem in early childhood education? Eur. Early Child. Educ. Res. J. 2018, 26, 574–588. [Google Scholar] [CrossRef]
- Lamon, S.J. Ratio and Proportion: Connecting Content and Children’s Thinking. J. Res. Math. Educ. 1993, 24, 41–61. [Google Scholar] [CrossRef]
- Pitkethly, A.; Hunting, R.P. A review of recent research in the area of initial fraction concepts. Educ. Stud. Math. 1996, 30, 5–38. [Google Scholar] [CrossRef]
- Pothier, Y.; Sawada, D. Partitioning: The emergence of rational number ideas in young children. J. Res. Math. 1983, 14, 307–317. [Google Scholar]
- Streefland, L. Fractions in Realistic Mathematics Education; Kluwer Academic: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Dávila, M. El reparto y las fracciones. Educ. Mat. 1992, 4, 32–45. [Google Scholar]
- Lamon, S.J. The development of unitizing: Its role in children’s partitioning strategies. J. Res. Math. Educ. 1996, 27, 170–193. [Google Scholar] [CrossRef]
- Rico, L. Aproximación a la investigación en Didáctica de la Matemática. AIEM 2012, 1, 29–63. [Google Scholar] [CrossRef]
- Thompson, P.W. Researching mathematical meanings for teaching. In Handbook of International Research in Mathematics Education; English, L., Kirshner, D., Eds.; Routledge: New York, NY, USA, 2016; pp. 435–461. [Google Scholar]
- Skovsmose, O. Meaning in mathematics education. In Meaning in Mathematics Education; Kilpatrick, J., Hoyles, C., Skovsmose, O., Eds.; Springer: New York, NY, USA, 2005; pp. 83–100. [Google Scholar]
- Godino, J.D.; Burgos, M.; Gea, M. Analysing theories of meaning in mathematics education from the onto-semiotic approach. Int. J. Math. Educ. Sci. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Radford, L. Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to learners’ types of generalization. Math. Think. Learn. 2003, 5, 37–70. [Google Scholar] [CrossRef]
- Sáenz-Ludlow, A. Learning mathematics: Increasing the value of initial mathematical wealth. Relime 2006, 9, 225–245. [Google Scholar]
- Vergnaud, G. La théorie des champs conceptuels. Rech. Didact. Mat. 1990, 10, 133–170. [Google Scholar]
- Steinbring, H. What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction. Educ. Stud. Math. 2006, 61, 133–162. [Google Scholar] [CrossRef] [Green Version]
- Biehler, R. Reconstruction of meaning as a didactical task: The concept of function as an example. In Meaning in Mathematics Education. Mathematics Education Library; Kilpatrick, J., Hoyles, C., Skovsmose, O., Valero, P., Eds.; Springer: New York, NY, USA, 2005; Volume 37, pp. 61–81. [Google Scholar]
- Frege, G. Escritos Filosóficos; Tecnos: Madrid, España, 1996. [Google Scholar]
- Rico, L.; Ruiz Hidalgo, J.F. Ideas to work for the curriculum change in school mathematics. In Proceedings of the 24th ICMI Study: School Mathematics Curriculum Reforms: Challenges, Changes and Opportunities, Tsukuba, Japan, 25–30 November 2018. [Google Scholar]
- Bell, A.W.; Costello, J.; Küchemann, D. A Review of Research in Mathematical Education. Reserch on Learning and Teaching; NFER-NELSON: New Jersey, NJ, USA, 1983. [Google Scholar]
- Hiebert, J.; Lefevre, P. Conceptual and procedural knowledge in mathematics: An introductory analysis. In Conceptual and Procedural Knowledge in Mathematics: The Case of Mathematics; Hiebert, J., Ed.; Lawrence Erlbaum Associates: Windsor, England, 1986; pp. 1–28. [Google Scholar]
- Goldin, G.A.; Kaput, J. A joint perspective on the idea of representation in learning and doing mathematics. In Theories in Mathematical Learning; Steffe, L., Nesher, P., Cobb, P., Golding, G., Greer, B., Eds.; Erlbaum: Hillsdale, NJ, USA, 1996; pp. 397–430. [Google Scholar]
- Kaput, J. Towards a theory of symbol use in mathematics. In Problems of Representation in the Teaching and Learning of Mathematics; Janvier, C., Ed.; LEA: Hillsdale, NJ, USA, 1987; pp. 159–195. [Google Scholar]
- Morgan, C.; Kynigos, C. Digital artefacts as representations: Forging connections between a constructionist and a social semiotic perspective. Edu. Stud. Math. 2014, 85, 357–379. [Google Scholar] [CrossRef]
- Rico, L. Sobre las nociones de representación y comprensión en la investigación en educación matemática. PNA 2009, 4, 1–14. [Google Scholar]
- Freudenthal, H. Didactical Phenomenology of Mathematical Structures; Reidel: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Van den Heuvel-Panhuizen, M. Didactical phenomenology (Freudenthal). In Encyclopedia of Mathematics Education; Lerman, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 174–176. [Google Scholar]
- Hernández, R.; Fernández, C.; Baptista, M.P. Metodología de investigación, 6th ed.; McGraw Hill Education: Mexico City, Mexico, 2014. [Google Scholar]
- Lamon, S.J. Ratio and Proportion: Children’s cognitive and metacognitive processes. In Rational Numbers: An Integration of Research; Carpenter, T.P., Fennema, E., Romberg, T.A., Eds.; Lawrence Erlbaum Associates: New Jersey, NJ, USA, 1993; pp. 131–156. [Google Scholar]
- Charalambous, C.Y.; Pitta-Pantazi, D. Drawing on a theoretical model to study students’ understandings of fractions. Educ. Stud. Math. 2007, 64, 293–316. [Google Scholar] [CrossRef]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education, 6th ed.; Routledge, Taylor & Francis Group: New York, NY, USA, 2007. [Google Scholar]
- Castro, E.; Castro, E. Representaciones y modelización. In La Educación Matemática en la Enseñanza Secundaria; Romero, R.L., Ed.; Horosi: Barcelona, Spain, 1997; pp. 95–124. [Google Scholar]
- Lupiáñez, J.L. Análisis didáctico. La planificación desde una perspectiva curricular. In Análisis Didáctico en Educación Matemática; Rico, L., Lupiáñez, J.L., Molina, M., Eds.; Comares: Granada, Spain, 2013; pp. 81–102. [Google Scholar]
- Lupiáñez, J.L. Sistemas de representación. In Elementos de Didáctica de la Matemática para el Profesor de Secundaria; Rico, L., Moreno, A., Eds.; Pirámide: Madrid, Spain, 2016; pp. 119–137. [Google Scholar]
- Castro-Rodríguez, E.; Pitta-Pantazi, D.; Rico, L.; Gómez, P. Prospective teachers’ understanding of the multiplicative part-whole relationship of fraction. Educ. Stud. Math. 2016, 92, 129–146. [Google Scholar] [CrossRef]
School | Type | Group | Participants |
---|---|---|---|
1 | Public | A | 16 |
B | 15 | ||
2 | Partnership | C | 26 |
3 | Partnership | D | 25 |
F | 23 |
Content | Description |
---|---|
Part-whole (equal parts) | Students use of pictures of pizzas divided into equal pieces |
Part-whole (inequal parts) | Students use of pictures of pizzas divided in pieces of diferent size |
Fraction | Students express fractions in their simbolic form (for example, 1/3) |
Multiplication | Students multiply natural numbers to solve the task |
Division | Students use division of natural numbers to solve the task |
Addition | Students include additions in their procedure of solving the task |
Decimal numbers | Students use decimal numbers to express the quantity of pizza who eat each boy or girl |
Comparison of natural numbers | Students compare natural numbers (usually the number of pieces made) to solve the task |
Grouping | Students perform distributions |
Category | Description | Variation | Description |
---|---|---|---|
Within | Students relate the respective quantities (number of girls’ pizzas to number of boys’ pizzas and number of boys to number of girls) and subsequently compare the results | Pre-within | Students compare the quantities of a given feature or magnitude, but fail to compare the results to solve the task posed |
Between | Students relate non-uniform quantities (number of pizzas to number of people) and subsequently compare the results. | Incomplete between | Students relate non-uniform quantities while failing to compare the results to reach a solution |
Unitisa-tion | Students identify four units (seven girls, three boys, three pizzas, one pizza) and create a new unit, the ratio for the comparison. | Use of written language to explain the procedure deployed | |
Pieces | Students divide the pizzas into the same number of pieces, calculate the number of pieces for the girls and the number for the boys and compare those quantities. | Incomplete pieces | Students divide the pizzas into the same number of pieces but take the procedure no further |
Other | Students use a procedure not classifiable under any of the categories established |
Representation | Description |
---|---|
Graphic | Use of pictures or charts |
Symbolic-numerical | Use of numerical or algebraic symbols |
Verbal | Use of written language to explain the procedure followed |
Strategy | No. Students |
---|---|
One strategy only | |
Within | 0 |
Pre-within | 12 |
Between | 12 |
Incomplete between | 13 |
Unitisation | 6 |
Pieces | 17 |
Incomplete pieces | 7 |
Other | 15 |
Combination of strategies | |
Pre-within and incomplete between | 10 |
Pre-within and unitisation | 2 |
Pre-within and pieces | 2 |
Pre-within and incomplete pieces | 3 |
Pre-within and other | 1 |
Incomplete between and incomplete pieces | 2 |
Graphic | Symbolic-Numerical | Verbal | All Three | |
---|---|---|---|---|
Graphic | 12 | - | ||
Symbolic-numerical | 4 (4) | 3 | - | |
Verbal | 43 (28) | 10 (10) | 7 | |
26 (6) | ||||
Total | 85 | 39 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Rodríguez, E.; Ferreira, M.; Montoro, A.B.; Ruiz-Hidalgo, J.F. Meanings Expressed by Primary Schoolchildren When Solving a Partitioning Task. Mathematics 2022, 10, 1339. https://doi.org/10.3390/math10081339
Castro-Rodríguez E, Ferreira M, Montoro AB, Ruiz-Hidalgo JF. Meanings Expressed by Primary Schoolchildren When Solving a Partitioning Task. Mathematics. 2022; 10(8):1339. https://doi.org/10.3390/math10081339
Chicago/Turabian StyleCastro-Rodríguez, Elena, Marisel Ferreira, Ana B. Montoro, and Juan F. Ruiz-Hidalgo. 2022. "Meanings Expressed by Primary Schoolchildren When Solving a Partitioning Task" Mathematics 10, no. 8: 1339. https://doi.org/10.3390/math10081339
APA StyleCastro-Rodríguez, E., Ferreira, M., Montoro, A. B., & Ruiz-Hidalgo, J. F. (2022). Meanings Expressed by Primary Schoolchildren When Solving a Partitioning Task. Mathematics, 10(8), 1339. https://doi.org/10.3390/math10081339