Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. An Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khusainov, D.Y.; Shuklin, G.V. Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Zilina Math. Ser. 2003, 17, 101–108. [Google Scholar]
- Khusainov, D.Y.; Diblík, J.; Růžičková, M.; Lukáčová, J. Representation of a solution of the Cauchy problem for an oscillating system with pure delay. Nonlinear Oscil. 2008, 11, 276–285. [Google Scholar] [CrossRef]
- Diblík, J.; Fečkan, M.; Pospíšil, M. Representation of a solution of the Cauchy problem for an oscillating system with multiple delays and pairwise permutable matrices. Abstr. Appl. Anal. 2013, 2013, 931493. [Google Scholar] [CrossRef] [Green Version]
- Diblík, J.; Fečkan, M.; Pospíšil, M. On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 2014, 52, 1745–1760. [Google Scholar] [CrossRef]
- Diblík, J.; Khusainov, D.Y.; Baštinec, J.; Sirenko, A.S. Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 2016, 51, 68–73. [Google Scholar] [CrossRef]
- Diblík, J.; Mencáková, K. Representation of solutions to delayed linear discrete systems with constant coefficients and with second-order differences. Appl. Math. Lett. 2020, 105, 106309. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions for linear fractional systems with pure delay and multiple delays. Math. Meth. Appl. Sci. 2021, 44, 12835–12850. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices. Appl. Math. Comput. 2021, 410, 126443. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions of delayed linear discrete systems with permutable or nonpermutable matrices and second-order differences. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2022, 116, 58. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Li, G. Exact solutions and Hyers–Ulam stability for fractional oscillation equations with pure delay. Appl. Math. Lett. 2021, 112, 106666. [Google Scholar] [CrossRef]
- Nawaz, M.; Jiang, W.; Sheng, J. The controllability of nonlinear fractional differential system with pure delay. Adv. Differ. Equ. 2020, 2020, 30. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Controllability and Hyers–Ulam stability of differential systems with pure delay. Mathematics 2022, 10, 1248. [Google Scholar] [CrossRef]
- Lazarević, M.P.; Debeljković, D.; Nenadić, Z. Finite-time stability of delayed systems. IMA J. Math. Control Inf. 2000, 17, 101–109. [Google Scholar] [CrossRef]
- Debeljković, D.L.; Stojanovic, S.B.; Jovanović, A.M. Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 2013, 10, 135–150. [Google Scholar]
- Lazarević, M.P.; Spasić, A.M. Finite-time stability analysis of fractional order time-delay system: Grownwall’s approach. Math. Comput. Model. 2009, 49, 475–481. [Google Scholar] [CrossRef]
- Du, F.; Jia, B. Finite-time stability of nonlinear fractional order systems with a constant delay. J. Nonlinear Model. Anal. 2020, 2, 1–13. [Google Scholar]
- Du, F.; Jia, B. Finite-time stability of a class of nonlinear fractional delay difference systems. Appl. Math. Lett. 2019, 98, 233–239. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Phat, V.N.; Thanh, N.T. New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach. Appl. Math. Lett. 2018, 83, 169–175. [Google Scholar] [CrossRef]
- Thanh, N.T.; Phat, V.N. Improved approach for finite-time stability of nonlinear fractional-order systems with interval time-varying delay. IEEE Trans Circuits Syst. II Exp. Briefs 2019, 66, 1356–1360. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, J. Finite time stability analysis of systems based on delayed exponential matrix. J. Appl. Math. Comput. 2017, 55, 335–351. [Google Scholar] [CrossRef]
- Luo, Z.; Wei, W.; Wang, J. Finite time stability of semilinear delay differential equations. Nonlinear Dyn. 2017, 89, 713–722. [Google Scholar] [CrossRef]
- Liang, C.; Wei, W.; Wang, J. Stability of delay differential equations via delayed matrix sine and cosine of polynomial degrees. Adv. Differ. Equ. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wang, J. Finite-time stability of a class of oscillating systems with two delays. Math. Meth. Appl. Sci. 2018, 41, 4943–4954. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T.; Mofarreh, F.; Bazighifan, O. Exact solutions and finite time stability of linear conformable fractional systems with pure delay. CMES 2022, in press. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science BV: Amsterdam, The Netherkands, 2006. [Google Scholar]
Theorem | L | h | Finite-Time Stability | ||||
---|---|---|---|---|---|---|---|
1 | 1 | 2 | ≤3.29158 | (optimal) | Yes | ||
2 | 1 | 2 | ≤4.30474 | Yes | |||
3 | 1 | 2 | ≤3.48949 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshenhab, A.M.; Wang, X.; Bazighifan, O.; Awrejcewicz, J. Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay. Mathematics 2022, 10, 1359. https://doi.org/10.3390/math10091359
Elshenhab AM, Wang X, Bazighifan O, Awrejcewicz J. Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay. Mathematics. 2022; 10(9):1359. https://doi.org/10.3390/math10091359
Chicago/Turabian StyleElshenhab, Ahmed M., Xingtao Wang, Omar Bazighifan, and Jan Awrejcewicz. 2022. "Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay" Mathematics 10, no. 9: 1359. https://doi.org/10.3390/math10091359
APA StyleElshenhab, A. M., Wang, X., Bazighifan, O., & Awrejcewicz, J. (2022). Finite-Time Stability Analysis of Linear Differential Systems with Pure Delay. Mathematics, 10(9), 1359. https://doi.org/10.3390/math10091359