A Novel Denoising Method for Retaining Data Characteristics Brought from Washing Aeroengines
Abstract
:1. Introduction
2. Denoising Method for Aeroengine Data Based on a Hybrid Model
2.1. Analysis of Noise Reduction Problems and Corresponding Solutions
2.2. Identification Method of Aeroengine Data Components Containing Noise Based on EMD and DTW
Algorithm 1. EMD algorithm |
IMFs = [] While haspeaks(X(i)): maximum_points = search(X(i), maximum) minimum_points = search(X(i), minimum) max_envelope = fitting(maximum_points) min_envelope = fitting(minimum_points) c(i) = (max_envelope + min_envelope)/2 r(i) = X(i) − c(i) IMFs.append(data_imf) |
Algorithm 2. DTW algorithmM |
n = length(engine_data) m = length(fault_data) dtw_matrix = [∞](n+1)×(m+1) dtw_matrix(0,0) = 0 for i = 2:n + 1 for j = 2:m + 1 dtw_matrix(i,j) = ∑[engine_data(i − 1) − fault_data(j − 1)]2 + min[dtw_matrix(i − 1,j), dtw_matrix(i − 1,j − 1), dtw_matrix(i,j − 1)] end end return dtw_matrix(n + 1, m + 1) |
2.3. Gated Recurrent Unit Autoencoder(GAE): A Proposed Denoising Autoencoder Model for Aeroengine Data
3. Experiment
3.1. Noise Identification Results for Data Components
3.2. Hyperparameter Settings for GAE
3.3. Validation of Aeroengine Data Denoising Method
3.3.1. Reconstruction Accuracy Verification of GAE
3.3.2. The Effectiveness of the Proposed Noise Reduction Method Based on Hybrid Model Is Verified
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Sun, J. Fuel and emission reduction assessment for civil aircraft engine fleet on-wing washing. Transp. Res. Part D Transp. Environ. 2018, 65, 324–331. [Google Scholar] [CrossRef]
- Xue, F.; Sun, X.; Dong, Z.; Yang, H.; Wang, H. Research on Data Denoising Algorithm Based on EEMD. Mech. Eng. Autom. 2021, 5, 9–11. [Google Scholar]
- Lu, T.; Qian, W.; He, X.; Le, Y.; Huang, J. An improved EMD noise reduction method based on noise statistical characteristics, Bull. Surv. Mapp. 2020, 11, 71–75. [Google Scholar]
- Hu, K.; Cheng, Q.; Li, B.; Gao, X. The complex data denoising in MR images based on the directional extension for the undecimated wavelet transform. Biomed. Signal Process. Control 2018, 39, 336–350. [Google Scholar] [CrossRef]
- Sadooghi, M.S.; Khadem, S.E. A new performance evaluation scheme for jet engine vibration signal denoising. Mech. Syst. Signal Process. 2016, 76, 201–212. [Google Scholar] [CrossRef]
- Maragos, P.; Schafer, R.W. Morphological Filters. Part 1. Their Set-Theoretic Analysis and Relations to Linear Shift-Invariant Filters. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1153–1169. [Google Scholar]
- Sedaaghi, M.H.; Daj, R.; Khosravi, M. Mediated morphological filters. In Proceedings of the 2001 International Conference on Image Processing (Cat. No.01CH37205), Thessaloniki, Greece, 7–10 October 2001; pp. 692–695. [Google Scholar]
- Yang, C.; Li, J.; Yang, W.; Yang, W. Denoising Method for Temperature Log Data Based on A Kalman Filter. Well Logging Technol. 2020, 2, 168–171. [Google Scholar]
- Li, Y.; Wang, C.; Tian, Y.; Wang, S. Parameter-shared variational auto-encoding adversarial network for desert seismic data denoising in Northwest China. J. Appl. Geophys. 2021, 11, 104428. [Google Scholar] [CrossRef]
- Bourlard, H.; Kamp, Y. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 1988, 4, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and Composing Robust Features with Denoising Autoencoders. In Proceedings of the 25th international conference on Machine Learning, Helsinki, Finland, 5–9 June 2008. [Google Scholar]
- Song, H.; Gao, Y.; Chen, W.; Zhang, X. Seismic noise suppression based on convolutional denoising autoencoder. Oil Geophys. Prospect. 2020, 6, 1210–1219. [Google Scholar]
- Wang, X.; Zhao, Y.; Teng, X.; Sun, W. A stacked convolutional sparse denoising autoencoder model for underwater heterogeneous information data. Appl. Acoust. 2020, 167, 107391. [Google Scholar] [CrossRef]
- Peng, F.; Gao, Y. BPSK Signal Denoise Based on Convolution Auto-Encoder Network. Inf. Commun. 2020, 8, 41–44. [Google Scholar]
- Song, H.; Gao, Y.; Chen, W.; Xue, Y.J.; Zhang, H.; Zhang, X. Seismic random noise suppression using deep convolutional autoencoder neural network. J. Appl. Geophys. 2020, 178, 104071. [Google Scholar] [CrossRef]
- Kensert, A.; Collaerts, G.; Efthymiadis, K.; Van Broeck, P.; Desmet, G.; Cabooter, D. Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms. J. Chromatogr. A 2021, 1, 462093. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Park, S.; Chu, W.W.; Yoon, J.; Won, J. Similarity Search of Time-Warped Subsequences via a Suffix Tree. Inf. Syst. 2003, 7, 867–883. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Olah, C. Understanding Lstm Networks. 2015. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs (accessed on 9 March 2021).
- Sequin, C.H.; Clay, R.D. Fault tolerance in artificial neural networks. In Proceedings of the 1990 IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990; pp. 703–708. [Google Scholar]
Abbreviations | Full Title |
---|---|
DAE | Denoising Autoencoders |
EMD | Empirical Mode Decomposition |
EGTM | Exhaust Gas Temperature Margin |
DTW | Dynamic Time Warping |
IMF | Intrinsic Mode Functions |
GRU | Gated Recurrent Unit Autoencoder |
OEM | Original Equipment Manufacturer |
MAE | Mean Absolute Error |
dis | Interpretation of dis |
---|---|
disc(i) | Distance sum between c(i) and all fault data |
disr(i) | Distance sum between r(i) and all fault data |
disc(i), FAN | Distance between c(i) and fan fault data |
disc(i), COMP | Distance between c(i) and compressor fault data |
disc(i), HPT | Distance between c(i) and high-pressure turbine fault data |
disr(i), FAN | Distance between r(i) and fan failure data |
disr(i), COMP | Distance between r(i) and compressor failure data |
disr(i), HPT | Distance between r(i)and high-pressure turbine failure data |
disr(i), LPT | Distance between r(i) and low-pressure turbine failure data |
ID | ESN | Time | EGTM |
---|---|---|---|
B-5793 | 657208 | 16 September 2013 1:52 | 90.845 |
B-5793 | 657208 | 16 September 2013 5:09 | 84.52 |
B-5793 | 657208 | 16 September 2013 8:50 | 87.208 |
B-5793 | 657208 | 16 September 2013 12:31 | 89.306 |
B-5793 | 657208 | 17 September 2013 8:00 | 82.397 |
B-5793 | 657208 | 17 September 2013 11:45 | 85.755 |
B-5793 | 657208 | 18 September 2013 9:44 | 85.973 |
B-5793 | 657208 | 21 September 2013 0:06 | 66.281 |
B-5793 | 657208 | 21 September 2013 4:08 | 86.617 |
B-5793 | 657208 | 21 September 2013 8:36 | 75.281 |
ID | Full Title | Noise Source | Noise Type |
---|---|---|---|
B2530 | 1 August 2009 | Abnormal left engine | Compressor fault noise |
B2588 | 2 January 2014 | Fan seal broken | Fan fault noise |
B6076 | 26 February 2002 | Turbine oil leakage | Turbine fault noise |
B6070 | 2 January 2014 | Abnormal turbine blade | Turbine fault noise |
Date | ID | Base | CAMP |
---|---|---|---|
8 September 2014 0:00 | B-1816 | Beijing | A320 720000-CCA-C-02 |
8 September 2014 0:00 | B-1816 | Beijing | A320 720000-CCA-C-02 |
28 September 2014 0:00 | B-2210 | Hangzhou | A320 720000-CCA-C-02 |
16 January 2015 0:00 | B-2210 | Hangzhou | A320 720000-CCA-C-02 |
9 March 2014 0:00 | B-2210 | Hangzhou | A320 720000-CCA-C-03 |
19 April 2014 0:00 | B-2210 | Hangzhou | A320 720000-CCA-C-03 |
16 April 2014 0:00 | B-2364 | Chengdu | A320 720000-CCA-C-02 |
16 April 2014 0:00 | B-2364 | Chengdu | A320 720000-CCA-C-02 |
Data Number | Flight Cycles | |
---|---|---|
Training data | 1 | 1~329 |
2 | 330~481 | |
3 | 482~708 | |
4 | 709~1142 | |
5 | 1143~1484 | |
6 | 1485~1711 | |
Testing Data | 7 | 1712~1981 |
8 | 1982~2222 |
Data Number | Fan Fault Data | Compressor Fault Data | High Pressure Turbine Fault Data | Low Pressure Turbine Fault Data |
---|---|---|---|---|
1 | 5.236 | 5.227 | 6.493 | 6.199 |
2 | 4442.453 | 5582.838 | ∞ | ∞ |
3 | 10,463.488 | 12,162.886 | ∞ | ∞ |
4 | 2.907 | 4.205 | 2.521 | 5.467 |
5 | 3.167 | 3.981 | 3.0158 | 6.385 |
6 | 6209.860 | 7909.258 | ∞ | ∞ |
Data Number | Fan Fault Data | Compressor Fault Data | High Pressure Turbine Fault Data | Low Pressure Turbine Fault Data |
---|---|---|---|---|
1 | 10.703 | 13.716 | 9.991 | 13.171 |
2 | ∞ | ∞ | ∞ | ∞ |
3 | ∞ | ∞ | ∞ | ∞ |
4 | 8.680 | 11.051 | 8.301 | 11.654 |
5 | 9.745 | 11.480 | 9.929 | 14.420 |
6 | ∞ | ∞ | ∞ | ∞ |
nin | Mean Reconstruction Error | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
15 | 0.0442 | 0.0476 | 0.0174 | 0.152 |
16 | 0.0420 | 0.0237 | 0.0208 | 0.0863 |
17 | 0.0486 | 0.0317 | 0.0236 | 0.111 |
18 | 0.0420 | 0.0286 | 0.0190 | 0.114 |
19 | 0.0398 | 0.0272 | 0.0197 | 0.117 |
20 | 0.0376 | 0.0397 | 0.0170 | 0.140 |
21 | 0.0481 | 0.0349 | 0.0261 | 0.150 |
22 | 0.0484 | 0.0441 | 0.0173 | 0.168 |
23 | 0.0548 | 0.0356 | 0.0254 | 0.114 |
24 | 0.0528 | 0.0496 | 0.0194 | 0.117 |
25 | 0.0497 | 0.0507 | 0.0223 | 0.186 |
nhid | Mean Reconstruction Error | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
15 | 0.0172 | 0.00522 | 0.00900 | 0.0260 |
16 | 0.0151 | 0.00460 | 0.00900 | 0.0220 |
17 | 0.0157 | 0.00748 | 0.00900 | 0.0350 |
18 | 0.0143 | 0.00487 | 0.0100 | 0.0270 |
19 | 0.0129 | 0.00375 | 0.00900 | 0.0190 |
20 | 0.0153 | 0.00503 | 0.00800 | 0.0260 |
21 | 0.0123 | 0.00343 | 0.00800 | 0.0180 |
22 | 0.0144 | 0.00469 | 0.00900 | 0.0220 |
23 | 0.0128 | 0.00418 | 0.00700 | 0.0190 |
24 | 0.0132 | 0.00486 | 0.00900 | 0.0230 |
25 | 0.0133 | 0.00421 | 0.00800 | 0.0230 |
Model | Reconstruction Error of Training Data | Average | |||||
---|---|---|---|---|---|---|---|
GAE | 0.0810 | 0.0909 | 0.0637 | 0.0681 | 0.0585 | 0.0861 | 0.0747 |
DAE | 0.0853 | 0.0995 | 0.0991 | 0.0628 | 0.0901 | 0.0817 | 0.0864 |
EMD | 0.185 | 0.3578 | 0.320 | 0.288 | 0.248 | 0.705 | 0.351 |
Model | Reconstruction Error of Testing Data | Average | |
---|---|---|---|
GAE | 0.0807 | 0.0807 | 0.0965 |
DAE | 0.161 | 0.161 | 0.0996 |
EMD | 0.365 | 0.467 | 0.416 |
Model | Step Size of the EGTM/°C | ||||||
---|---|---|---|---|---|---|---|
Training Data | Testing Data | ||||||
Original data | 11.326 | 5.212 | 7.199 | 12.206 | 12.078 | 5.613 | 6.971 |
The proposed model | 10.604 | 4.841 | 6.832 | 11.292 | 11.555 | 5.584 | 5.108 |
DAE | 9.649 | 4.525 | 5.435 | 9.979 | 10.958 | 5.871 | 2.709 |
EMD | 10.220 | 2.813 | 5.067 | 8.137 | 9.469 | 10.288 | 0.738 |
Model | Training Data | Testing Data |
---|---|---|
The proposed model | 0.381 | 1.736 |
DAE | 2.522 | 9.116 |
EMD | 6.978 | 30.358 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Zu, M.; Cui, Z.; Zhong, S. A Novel Denoising Method for Retaining Data Characteristics Brought from Washing Aeroengines. Mathematics 2022, 10, 1485. https://doi.org/10.3390/math10091485
Yan Z, Zu M, Cui Z, Zhong S. A Novel Denoising Method for Retaining Data Characteristics Brought from Washing Aeroengines. Mathematics. 2022; 10(9):1485. https://doi.org/10.3390/math10091485
Chicago/Turabian StyleYan, Zhiqi, Ming Zu, Zhiquan Cui, and Shisheng Zhong. 2022. "A Novel Denoising Method for Retaining Data Characteristics Brought from Washing Aeroengines" Mathematics 10, no. 9: 1485. https://doi.org/10.3390/math10091485
APA StyleYan, Z., Zu, M., Cui, Z., & Zhong, S. (2022). A Novel Denoising Method for Retaining Data Characteristics Brought from Washing Aeroengines. Mathematics, 10(9), 1485. https://doi.org/10.3390/math10091485