Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts
Abstract
:1. Introduction
2. Preliminaries Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, A.W. On the Schwarz Christoffel transformation and p-valent functions. Trans. Am. Math. Soc. 1950, 68, 204–223. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Ghanim, F. A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions. Kragujev. J. Math. 2021, 45, 499–519. [Google Scholar] [CrossRef]
- Aouf, M.K. On coefficient bounds of a certain class of p-valent λ-spiral functions of order α. Int. J. Math. Math. Sci. 1987, 10, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Aouf, M.K. On a class of p-valent starlike functions of order α. Int. J. Math. Math. Sci. 1987, 10, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Aouf, M.K.; Lashin, A.Y.; Bulboacă, T. Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives. Math. Slovaca 2021, 71, 331–340. [Google Scholar] [CrossRef]
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, V. Multivalent Prestarlike Functions with Respect to Symmetric Points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Noor, K.I.; Khan, N. Some convolution properties of a subclass of p-valent functions. Maejo Int. J. Sci. Technol. 2015, 9, 181–192. [Google Scholar]
- Nunokawa, M.; Owa, S.; Sekine, T.; Yamakawa, R.; Saitoh, H.; Nishiwaki, J. On certain multivalent functions. Int. J. Math. Math. Sci. 2007, 2007, 72393. [Google Scholar] [CrossRef] [Green Version]
- Oros, G.I.; Oros, G.; Owa, S. Applications of Certain p-Valently Analytic Functions. Mathematics 2022, 10, 910. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Lashin, A.Y. Subordination properties of certain classes of multivalently analytic functions. Math. Comput. Model. 2010, 52, 596–602. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Frasin, B.A.; Liu, J.-L. Certain sufficient conditions for starlikeness and convexity of meromorphically multivalent functions. Acta Math. Scientia 2013, 33, 1300–1304. [Google Scholar] [CrossRef]
- Yousef, A.T.; Salleh, Z.; Al-Hawary, T. On a class of p-valent functions involving generalized differential operator. Afrika Matematika 2021, 32, 275–287. [Google Scholar] [CrossRef]
- Chichra, P.N. New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 1977, 62, 37–43. [Google Scholar] [CrossRef]
- Ali, R.M.; Thomas, D.K. On the starlikeness of the Bernardi integral operator. Proc. Japan Acad. Set. A 1991, 67, 319–321. [Google Scholar] [CrossRef]
- Singh, R.; Singh, V. Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106, 145–152. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S. Starlikeness and convexity of certain integral. Ann. Univ. Mariae Curie Sklodowska Sect. A 1981, 35, 45–47. [Google Scholar]
- Kim, Y.-C.; Srivastava, H.M. Some applications of a differential subordination. Int. J. Math. Math. Sci. 1999, 22, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Lee, S.-K.; Subramanian, K.G.; Swaminathan, A. A third-order differential equation and starlikeness of a Double integral operator. Abst. Appl. Anal. 2011, 2011, 901235. [Google Scholar] [CrossRef]
- Szasz, R. The sharp version of a criterion for starlikeness related to the operator of Alexander. Ann. Pol. Math. 2008, 94, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-G.; Liu, J.-L. On a class of analytic functions with missing coefficients. Appl. Math. Comput. 2010, 215, 3473–3481. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.L.; Padmanabhan, K.S. On analytic functions with reference to the Bernardi integral operator. Bull. Aust. Math. Soc. 1982, 25, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 135 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Jack, I.S. Functions starlike and convex of order α. J. Lond. Math. Soc. 1971, 3, 469–474. [Google Scholar] [CrossRef]
- Nunokawa, M.; Thomas, D.K. On the Bernardi integral operator. In Current Topics in Analytic Function Theory; Srivastava, H.M., Owa, S., Eds.; World Scientific Publishing: River Edge, NJ, USA; Singapore; London, UK; Hong Kong, China, 1992; pp. 212–219. [Google Scholar]
- Lashin, A.Y. Some convolution properties of analytic functions. Appl. Math. Lett. 2005, 18, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Sokol, J. Starlikeness of Hadamard product of certain analytic functions. Appl. Math. Comput. 2007, 190, 1157–1160. [Google Scholar]
- Ponnusamy, S.; Singh, V. Convolution Properties of Some Classes of Analytic Functions. J. Math. Sci. 1998, 89, 1008–1020. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics No. 255; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Owa, S.; Nunokawa, M. Applications of a subordination theorem. J. Math. Anal. Appl. 1994, 188, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, J.; Stankiewicz, Z. Some applications of the Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie Sklodowska Sect. A 1986, 40, 251–265. [Google Scholar]
- Vatsa, B.S. Introduction to Real Analysis; Satish Kumar Jain: Darya Ganj, New Delhi, India, 2002. [Google Scholar]
- Aouf, M.K.; Ling, Y. Some convolution properties of a certain class of p-valent analytic functions. Appl. Math. Lett. 2009, 22, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Zhongzhu, Z.; Owa, S. Convolution properties of a class of bounded analytic functions. Bull. Aust. Math. Soc. 1992, 45, 9–23. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashin, A.M.Y.; Aouf, M.K. Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts. Mathematics 2022, 10, 1506. https://doi.org/10.3390/math10091506
Lashin AMY, Aouf MK. Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts. Mathematics. 2022; 10(9):1506. https://doi.org/10.3390/math10091506
Chicago/Turabian StyleLashin, Abdel Moneim Y., and Mohamed K. Aouf. 2022. "Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts" Mathematics 10, no. 9: 1506. https://doi.org/10.3390/math10091506
APA StyleLashin, A. M. Y., & Aouf, M. K. (2022). Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts. Mathematics, 10(9), 1506. https://doi.org/10.3390/math10091506