The Non-Linear Fokker–Planck Equation in Low-Regularity Space
Abstract
:1. Introduction and Main Results
- means that there is a constant such that . means and .
- Denoting the dot product for any complex functions.
- Denoting the complex inner product over , i.e.,
- The convolution of f and g is defined as
- denotes the real part of a complex number.
2. Basic Lemmas
3. Global Existence
4. Large Time Behavior
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, J.; Wang, Q.R.; Yang, X.F. Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations. J. Stat. Phys. 2018, 173, 222–241. [Google Scholar] [CrossRef]
- Guo, Y. The Boltzmann equation in the whole space. Indiana Univ. Math. J. 2004, 53, 1081–1094. [Google Scholar] [CrossRef]
- Duan, R.J.; Liu, S.Q. Time-periodic solutions of the Vlasov-Poisson-Fokker-Planck system. Acta Math. Sci. 2015, 35, 876–886. [Google Scholar] [CrossRef]
- Duan, R.J.; Fornasier, M.; Toscani, G. A kinetic flocking model with diffusion. Comm. Math. Phys. 2010, 300, 95–145. [Google Scholar] [CrossRef]
- Xiong, L.J.; Wang, T.; Wang, L.S. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinet Relat. Model. 2014, 1, 169–194. [Google Scholar] [CrossRef]
- Duan, R.J.; Liu, S.Q.; Sakamoto, S.; Strain, R.M. Global Mild Solutions of the Landau and Non-Cutoff Boltzmann Equations. Comm. Pure Appl. Math. 2021, 74, 932–1020. [Google Scholar] [CrossRef]
- Wang, X.L.; Shi, H.P. Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in. Appl. Anal. 2018, 11, 1933–1959. [Google Scholar] [CrossRef]
- Liu, L.Q.; Wang, H. Global existence and decay of solutions for hard potentials to the Fokker-Planck-Boltzmann equation without cut-off. Commun. Pure Appl. Anal. 2020, 19, 3113–3136. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Global existence and decay of solutions for soft potentials to the Fokker-Planck-Boltzmann equation without cut-off. J. Math. Anal. Appl. 2020, 486, 123947. [Google Scholar] [CrossRef]
- Hwang, H.J.; Jang, J. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discret. Contin. Dyn. Syst. Ser. B 2013, 18, 681–691. [Google Scholar] [CrossRef]
- Wang, X.L. Global Existence and Long-Time Behavior of Solutions to the Vlasov-Poisson-Fokker-Planck System. Acta Appl. Math. 2020, 170, 853–881. [Google Scholar] [CrossRef]
- Barbu, V.; Röckner, M. Nonlinear Fokker–Planck equations with timedependent coefficients. arXiv 2021, arXiv:2110.12460. [Google Scholar]
- Barbu, V.; Röckner, M. Solutions for nonlinear Fokker–Planck equations with measures as initial data and McKean-Vlasov equations. J. Funct. Anal. 2021, 280, 108926. [Google Scholar] [CrossRef]
- Bouchut, F. Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J. Funct. Anal. 1993, 111, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.A.; Soler, J. On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in Lp spaces. Math. Methods Appl. Sci. 1995, 18, 825–839. [Google Scholar] [CrossRef]
- Cercignani, C. The Boltzmann Equation and Its Applications; Springer: New York, NY, USA, 1988. [Google Scholar]
- Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
- Golse, F.; Imbert, C.; Mouhot, C.; Vasseur, A. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. arXiv 2016, arXiv:1607.08068. [Google Scholar] [CrossRef]
- He, L.B. Regularities of the solutions to the Fokker-Planck-Boltzmann equation. J. Differ. Equ. 2008, 244, 3060–3079. [Google Scholar] [CrossRef] [Green Version]
- Hassan, I. Application to differential transformation method for solving systems of differential equations. Appl. Math. Model. 2008, 32, 2552–2559. [Google Scholar] [CrossRef]
- Hatami, M.; Ganji, D.D.; Sheikholeslami, M. Differential Transformation Method for Mechanical Engineering Problems; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ji, M.; Qi, W.; Shen, Z.; Yi, Y. Existence of periodic probability solutions to Fokker-Planck equations with applications. J. Funct. Anal. 2019, 277, 108281. [Google Scholar] [CrossRef]
- Kanth, A.; Aruna, K. Differential transform method for solving linear and non-linear systems of partial differential equations. Phys. Lett. A 2008, 372, 6896–6898. [Google Scholar] [CrossRef]
- Li, H.L.; Matsumura, A. Behaviour of the Fokker-Planck-Boltzmann equation near a Maxwellian. Arch. Ration. Mech. Anal. 2008, 189, 1–44. [Google Scholar] [CrossRef]
- Pulvirenti, M.; Simeoni, C. L∞ estimates for the Vlasov-Poisson-Fokker-Planck equation. Math. Methods Appl. Sci. 2000, 23, 923–935. [Google Scholar] [CrossRef]
- Santos, L. Microscopic dynamics of nonlinear Fokker-Planck equations. Phys. Rev. E 2021, 103, 032106. [Google Scholar] [CrossRef] [PubMed]
- Villani, C. A review of mathematical topics in collisional kinetic theory. In Handbook of Mathematical Fluid Dynamics; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1, pp. 71–305. [Google Scholar]
- Yang, T.; Yu, H.J. Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system. SIAM J. Math. Anal. 2010, 42, 459–488. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Tang, B. The Non-Linear Fokker–Planck Equation in Low-Regularity Space. Mathematics 2022, 10, 1576. https://doi.org/10.3390/math10091576
Fan Y, Tang B. The Non-Linear Fokker–Planck Equation in Low-Regularity Space. Mathematics. 2022; 10(9):1576. https://doi.org/10.3390/math10091576
Chicago/Turabian StyleFan, Yingzhe, and Bo Tang. 2022. "The Non-Linear Fokker–Planck Equation in Low-Regularity Space" Mathematics 10, no. 9: 1576. https://doi.org/10.3390/math10091576
APA StyleFan, Y., & Tang, B. (2022). The Non-Linear Fokker–Planck Equation in Low-Regularity Space. Mathematics, 10(9), 1576. https://doi.org/10.3390/math10091576