Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes
Abstract
:1. Introduction
2. Plasticity Coupled with Damage
2.1. State Variables
- -
- The effective stress tensors and elastic strain ;
- -
- The effective isotropic hardening parameters ;
- -
- The effective kinematics hardening parameters .
2.2. Fundamental Equations
2.3. Hill Anisotropy Criterion
3. Numerical Integration Schema
Damage Model
4. Numerical Results of Coupled Anisotropic Plasticity and Damage Models
4.1. Perforated Square Plate under Biaxial Extension
4.2. Numerical Simulations of Bulge Test
4.3. Model Evaluation Using Uniaxial Tensile Test
4.4. Numerical Simulation of Cross-Die Deep Drawing Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Local Iteration: Resolve of by Newton’s Method
Set: , , (i) Check convergence IF THEN End Loop (ii) Compute Jacobian (iii) Evaluate solution (iv) Set i = i + 1 go to (i) |
Appendix B. Consistent Tangent Modulus
|
References
- Karafillis, A.P.; Boyce, M. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 1993, 41, 1859–1886. [Google Scholar] [CrossRef]
- Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Brem, J.C.; Hayashida, Y.; Lege, D.J.; Matsui, K.; Murtha, S.J.; Hattori, S.; et al. Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 1997, 45, 1727–1763. [Google Scholar] [CrossRef]
- Ben Said, L.; Wali, M. Accuracy of Variational Formulation to Model the Thermomechanical Problem and to Predict Failure in Metallic Materials. Mathematics 2022, 10, 3555. [Google Scholar] [CrossRef]
- Murugesan, M.; Jung, D.W. Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications. Materials 2009, 12, 609. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, L.; Wali, M.; Khedher, N.; Kessentini, A.; Algahtani, A.; Dammak, F. Efficiency of rubber-pad cushion in bending process of a thin aluminum sheet. J. Rubber Res. 2020, 23, 89–99. [Google Scholar] [CrossRef]
- Bouhamed, A.; Mars, J.; Jrad, H.; Ben Said, L.; Wali, M.; Dammak, F.; Torchani, A. Identification of fully coupled non-associated-Ductile damage constitutive equations for thin sheet metal applications: Numerical feasibility and experimental validation. Thin-Walled Struct. 2022, 176, 109365. [Google Scholar] [CrossRef]
- Liu, K.; Jin, S.; Rui, Y.; Huang, J.; Zhou, Z. Effect of Lithology on Mechanical and Damage Behaviors of Concrete in Concrete-Rock Combined Specimen. Mathematics 2022, 10, 727. [Google Scholar] [CrossRef]
- Bonora, N.; Majzoobi, G.H.; Khademi, E. Numerical implementation of a new coupled cyclic plasticity and continum damage model. Comput. Mater. Sci. 2014, 81, 538–547. [Google Scholar] [CrossRef]
- Rodriguez, P.; Ulloa, J.; Samaniego, C.; Samaniego, E. A variational approach to the phase field modeling of brittle and ductile fracture. Int. J. Mech. Sci. 2018, 144, 502–517. [Google Scholar] [CrossRef]
- Chaboche, J.L. Anisotropic creep damage in the framework of the continuum damage mechanics. Nucl. Eng. Des. 1984, 79, 309–319. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; University Press: Cambridge, UK, 1990. [Google Scholar]
- Needleman, A.; Tvergaard, V. An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 1984, 32, 461. [Google Scholar] [CrossRef]
- Needleman, A.; Tvergaard, V. An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 1987, 35, 151. [Google Scholar] [CrossRef]
- Gao, X.; Wang, T.; Kim, J. On Ductile Fracture Initiation Toughness: Effects of Void Volume Fraction, Void Shape and Void Distribution. Int. J. Solids Struct. 2005, 42, 5097–5117. [Google Scholar] [CrossRef]
- Zhang, Z.; Skallerud, B. Void Coalescence with and without Prestrain History. Int. J. Damage Mech. 2010, 19, 153–174. [Google Scholar] [CrossRef]
- Wciślik, W.; Lipiec, S. Void-Induced Ductile Fracture of Metals: Experimental Observations. Materials 2022, 15, 6473. [Google Scholar] [CrossRef] [PubMed]
- Abbassi, F.; Belhadj, T.; Mistou, S.; Zghal, A. Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Mater. Des. 2013, 45, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Benallal, A.; Billardon, R.; Doghri, I. An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations. Appl. Numer. Methods 1988, 4, 731–740. [Google Scholar] [CrossRef]
- De Souza Neto, E.A.; Peric, D. A computational framework for a class of models for fully coupled elastoplastic damage at finite strains with reference to the linearization aspects. Comput. Methods Appl. Mech. Eng. 1996, 130, 179–193. [Google Scholar] [CrossRef]
- De Souza Neto, E.A.; Peric, D.; Owen, D.R.J. Continuum modelling and numerical simulation of material damage at finite strains. Arch. Comput. Methods Eng. 1998, 5, 311–384. [Google Scholar] [CrossRef]
- Doghri, I. Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage. Int. J. Numer. Methods Eng. 1995, 38, 3403–3431. [Google Scholar] [CrossRef]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Krairi, K.; Doghri, I. A thermodynamically based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast. 2014, 60, 163–181. [Google Scholar] [CrossRef]
- Bonora, N. A nonlinear CDM model for ductile failure. Eng. Fract. Mech. 1997, 58, 11–28. [Google Scholar] [CrossRef]
- Badreddine, H.; Saanouni, K.; Dogui, A. On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming. Int. J. Plast. 2010, 26, 1541–1575. [Google Scholar] [CrossRef]
- Saanouni, K. On the numerical prediction of the ductile fracture in metal forming. Eng. Fract. Mech. 2008, 75, 3545–3559. [Google Scholar] [CrossRef]
- Khelifa, M.; Oudjene, M.; Khennane, A. Fracture in sheet metal forming: Effect of ductile damage evolution. Comput. Struct. 2007, 85, 205–212. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar]
- Hosford, W.F. A Generalized Isotropic Yield Criterion. J. Appl. Mech. 1972, 39, 607–609. [Google Scholar] [CrossRef]
- Teixeira, P.; Santos, A.D.; Andrade Pires, F.M.; César de Sa, J.M.A. Finite element prediction of ductile fracture in sheet metal forming processes. J. Mater. Process. Technol. 2006, 177, 278–281. [Google Scholar] [CrossRef]
- Ghorbel, O.; Mars, J.; Koubaa, S.; Wali, M.; Dammak, F. Coupled anisotropic plasticity-ductile damage; modeling, experimental verification, and application to sheet metal forming simulation. Int. J. Mech. Sci. 2019, 150, 548–560. [Google Scholar] [CrossRef]
- Habibi, N.; Sundararaghavan, V.; Prahl, U.; Ramazani, A. Experimental and Numerical Investigations into the Failure Mechanisms of TRIP700 Steel Sheets. Metals 2018, 8, 1073. [Google Scholar] [CrossRef] [Green Version]
- Carvalho-Resende, T.; Balan, T.; Bouvier, S.; Abed-Meraim, F.; Sablin, S.-S. Numerical investigation and experimental validation of a plasticity model for sheet steel forming. Model. Simul. Mater. Sci. Eng. 2013, 21, 015008. [Google Scholar] [CrossRef]
Compute trial elastic stress (Elastic predictor) (i) Check plastic condition IF THEN (Elastic) Set , and RETURN ELSE (Plastic correction) (ii) Find by local iteration (Appendix A) (iii) Update variables (iv) Consistent elastoplastic modulus (Appendix B) ENDIF |
Elasticity | , |
Isotropic Hardening (MPa) | ; ; |
Damage | , , , , |
u (mm) | dA | dmax | |
---|---|---|---|
0.5 | 0.115 | 0.00278 | 0.667 |
1 | 1.415 | 0.397 | 0.397 |
1.5 | 0.38 | 0.464 | 0.464 |
Elasticity | , |
Isotropic Hardening (MPa) | |
Initial yield stress, (MPa) | 175 |
Damage | , , , , |
C | Smax | Mnmax | Pmax |
---|---|---|---|
0.08 | 0.03 | 0.4 | 0.03 |
Elastic Prop. | Hill 1948 Coefficients | |||||
---|---|---|---|---|---|---|
F | G | H | N | |||
220 | 0.3 | 278 | 0.43 | 0.47 | 0.53 | 1.49 |
Isotropic hardening parameters | (MPa) | (MPa) | ||
490 | 50 | 1.35 | 30 | |
Damage parameters | (MPa) | (MPa) | ||
5 | 1.5 | 200 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Said, L.; Allouch, M.; Wali, M.; Dammak, F. Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes. Mathematics 2023, 11, 204. https://doi.org/10.3390/math11010204
Ben Said L, Allouch M, Wali M, Dammak F. Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes. Mathematics. 2023; 11(1):204. https://doi.org/10.3390/math11010204
Chicago/Turabian StyleBen Said, Lotfi, Marwa Allouch, Mondher Wali, and Fakhreddine Dammak. 2023. "Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes" Mathematics 11, no. 1: 204. https://doi.org/10.3390/math11010204
APA StyleBen Said, L., Allouch, M., Wali, M., & Dammak, F. (2023). Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes. Mathematics, 11(1), 204. https://doi.org/10.3390/math11010204