Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling
Abstract
:1. Introduction
2. Problem Statement
3. Method Description
3.1. The Algorithm of Target Zone Covering
3.2. Algorithm of the Hamiltonian Circuit Search
Algorithm 1 MATLAB-like pseudo-code of the total algorithm |
hamCycle = empty; % initialization of total Hamiltonian cycle as empty constant. N = 21; % Initialization of maximal number of nodes in cluster. rhoCounter = 0; while hamCycle == empty rho = 1 – rhoCounter*0.01; % density factor %------------------------------------------------ % Construction of the terrain graph undistortedPlacement = fieldsUndistortedPlacement(Map, R rho); distortedPlacement = fieldsDistortedPlacement(Map, R, rho, undistortedPlacement); terrainGraph = createTerrainGraph(distortedPlacement, R, rho); numGk = round(numNodes(terrainGraph)/N); % Calculation of number of clusters % ---------------------------------------------- % Execution of clustering procedure: for i = 1:1: numGk Gk(i) = “node with maximal degree among non-clustered nodes”; n = 0; while n < N or “no new nodes with for current cluster Gk(i)” Gk(i) = [Gk(i) “node with for Gk(i)”]; end end %----------------------------------------------------------------- % Construction of the graph of clusters clustersGraph = createClustersGraph(Gk, R, rho); %----------------------------------------------------------------- % % Search of Hamiltonian cycle over graph of clusters hamCycleClusters = hamiltonianCycle(clustersGraph); %----------------------------------------------------------------- % Search of Hamiltonian paths inside every cluster-subgraph if hamCycleClusters != empty for i = 1:1:length(Gk) hamPath(i) = hamiltonianPath(Gk(hamCycleClusters(i)), Gk(hamCycleClusters(i + 1))); if hamPath(i) == empty break; end end %-------------------------------------------------------------- % Connecting of Hamiltonian paths to the total Hamiltonian cycle over the terrain % graph hamCycle = connect(hamPath); end end |
4. Results and Discussion
4.1. Efficiency of the Terrain Map Covering Algorithm
4.2. Efficiency of the Algorithm for the Hamiltonian Circuit Search
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammad, A.W.A.; da Costa, B.B.F.; Soares, C.A.P.; Haddad, A.N. The Use of Unmanned Aerial Vehicles for Dynamic Site Layout Planning in Large-Scale Construction Projects. Buildings 2021, 11, 602. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Eun, J.; Song, B.D.; Lee, S.; Lim, D.-E. Mathematical Investigation on the Sustainability of UAV Logistics. Sustainability 2019, 11, 5932. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.P.; Alenezi, F.; Thirumoorthy, G.; Dutta, A.K.; You, J. Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks. Mathematics 2021, 9, 2984. [Google Scholar] [CrossRef]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV monitoring and documentation of a large landslide. Appl. Geomat. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Pérez-Álvarez, R.; Sedano-Cibrián, J.; de Luis-Ruiz, J.M.; Fernández-Maroto, G.; Pereda-García, R. Mining Exploration with UAV, Low-Cost Thermal Cameras and GIS Tools—Application to the Specific Case of the Complex Sulfides Hosted in Carbonates of Udías (Cantabria, Spain). Minerals 2022, 12, 140. [Google Scholar] [CrossRef]
- Kloepper, L.N.; Kinniry, M. Recording animal vocalizations from a UAV: Bat echolocation during roost re-entry. Sci. Rep. 2018, 8, 7779. [Google Scholar] [CrossRef] [Green Version]
- Chodorek, A.; Chodorek, R.R.; Yastrebov, A. Weather Sensing in an Urban Environment with the Use of a UAV and WebRTC-Based Platform: A Pilot Study. Sensors 2021, 21, 7113. [Google Scholar] [CrossRef]
- Chen, W.K. Applied Graph Theory, 1st ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Pasqualetti, F.; Franchi, A.; Bullo, F. On cooperative patrolling: Optimal trajectories, complexity analysis, and approximation algorithms. IEEE Trans. Robot. 2012, 28, 592–606. [Google Scholar] [CrossRef] [Green Version]
- Portugal, D.; Rocha, R. Msp algorithm: Multi-robot patrolling based on territory allocation using balanced graph partitioning. Proc. 2010 ACM Symp. Appl. Comput. 2010, 1, 1271–1276. [Google Scholar] [CrossRef]
- Elor, Y.; Bruckstein, A.M. Multi-a(ge)nt Graph Patrolling and Partitioning. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 15–18 September 2009; pp. 52–57. [Google Scholar] [CrossRef]
- Legovich, Y.S.; Diane, S.A.K.; Rusakov, K.D. Integration of Modern Technologies for Solving Territory Patroling Problems with the Use of Heterogeneous Autonomous Robotic Systems. In Proceedings of the 2018 Eleventh International Conference Management of large-scale system development MLSD, Moscow, Russia, 1–3 October 2018. [Google Scholar] [CrossRef]
- Caraballo, L.E.; Díaz-Báñez, J.M.; Fabila-Monroy, R.; Hidalgo-Toscano, C. Stochastic strategies for patrolling a terrain with a synchronized multi-robot system. Eur. J. Oper. Res. 2022, 301, 1099–1116. [Google Scholar] [CrossRef]
- Basak, A.; Fang, F.; Nguyen, T.H.; Kiekintveld, C. Abstraction methods for solving graph-based security games. Int. Conf. Auton. Agents Multiagent Syst. 2016, 10003, 13–33. [Google Scholar] [CrossRef]
- Pan, J.-S.; Song, P.-C.; Chu, S.-C.; Peng, Y.-J. Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub. Mathematics 2020, 8, 333. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Li, P.; Ning, Y.; Suo, C. A Method for Autonomous Navigation and Positioning of UAV Based on Electric Field Array Detection. Sensors 2021, 21, 1146. [Google Scholar] [CrossRef]
- Raymond, A.S. Stratigraphic Sedimentary Inversion Using Paths in Graphs; M.Sc., Federal University of Rio de Janeiro: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Goncharenko, V.I.; Kochkarov, A.A.; Yatskin, D.V.; Rumiantsev, B.V. Modeling the Detection of Moving Objects by Means of a Spatially Distributed Continuous Monitoring System with a Dynamic Structure. Adv. Syst. Sci. Appl. 2022, 22, 1–10. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, P.; Wang, J.; Wang, G.; Meng, F. Traffic Patrolling Routing Problem with Drones in an Urban Road System. Sensors 2019, 19, 5164. [Google Scholar] [CrossRef] [Green Version]
- Deı, V.G.; Klinz, B.; Woeginger, G.J. Exact algorithms for the Hamiltonian cycle problem in planar graphs. Oper. Res. Lett. 2006, 34, 269–274. [Google Scholar] [CrossRef]
- Deogun, J.S.; Steiner, G. Polynomial algorithms for hamiltonian cycle in cocomparability graphs. SIAM J. Comput. 1994, 23, 520–552. [Google Scholar] [CrossRef]
- Sahalot, A.; Shrimali, S. A comparative study of brute force method, nearest neighbour and greedy algorithms to solve the travelling salesman problem. Int. J. Res. Eng. Technol. 2014, 2, 59–72. [Google Scholar]
- Karypis, G.; Kumar, V. METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices; University of Minnesota Digital Conservancy: Minneapolis, MN, USA, 1997. [Google Scholar]
- Kochkarov, R.; Kochkarov, A. Introduction to the Class of Prefractal Graphs. Mathematics 2022, 10, 2500. [Google Scholar] [CrossRef]
- García-Díaz, J.; Rodríguez-Henríquez, L.M.X.; Pérez-Sansalvador, J.C.; Pomares-Hernández, S.E. Graph Burning: Mathematical Formulations and Optimal Solutions. Mathematics 2022, 10, 2777. [Google Scholar] [CrossRef]
- Biswas, P. Hamiltonian (Graph, Source, Destination), MATLAB Central File Exchange 2022. Available online: https://www.mathworks.com/matlabcentral/fileexchange/51610-hamiltonian-graph-source-destination (accessed on 1 January 2022).
- Sipser, M. Introduction to the Theory of Computation, 1st ed.; International Thomson Publishing: Stamford, CT, USA, 1996. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumiantsev, B.V.; Kochkarov, R.A.; Kochkarov, A.A. Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling. Mathematics 2023, 11, 223. https://doi.org/10.3390/math11010223
Rumiantsev BV, Kochkarov RA, Kochkarov AA. Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling. Mathematics. 2023; 11(1):223. https://doi.org/10.3390/math11010223
Chicago/Turabian StyleRumiantsev, Boris V., Rasul A. Kochkarov, and Azret A. Kochkarov. 2023. "Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling" Mathematics 11, no. 1: 223. https://doi.org/10.3390/math11010223
APA StyleRumiantsev, B. V., Kochkarov, R. A., & Kochkarov, A. A. (2023). Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling. Mathematics, 11(1), 223. https://doi.org/10.3390/math11010223