Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model
Abstract
:1. Introduction
- We used deep learning models, namely long short-term memory and a convolutional neural network combined with long short-term memory (CNN–LSTM), for detecting various types of attacks that threaten Agriculture 4.0;
- The security system based on Agriculture 4.0 was developed by using a real network traffic dataset: CIC-DDoS2019;
- The developed Agriculture 4.0 system was compared to different security systems;
- We used the Pearson correlation method for selecting important features that can help develop security systems.
2. Background of Study
3. Materials and Methods
3.1. Framework of the Proposed System
CIC-DDoS2019 Dataset
3.2. Preprocessing
3.2.1. One-Hot Encoding Method
3.2.2. The Minimum/Maximum Approach
3.2.3. Feature Selection
3.3. Deep Learning Approach
4. Experiment
- Finding the significant features that can help to achieve high-performance detection;
- Using the deep learning approach for detection of attacks to protect agriculture-based IoT;
- Achieving the highest performance when compared to existing systems.
4.1. Performance Measurements
4.2. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- He, W.; Xu, L. A state-of-the-art survey of cloud manufacturing. Int. J. Comput. Integr. Manuf. 2015, 28, 239–250. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, L.; Tao, F.; Zhao, C.; Chai, X.; Zhao, X. Cloud manufacturing: From concept to practice. Enterp. Inf. Syst. 2013, 9, 186–209. [Google Scholar] [CrossRef]
- Schlechtendahl, J.; Keinert, M.; Kretschmer, F.; Lechler, A.; Verl, A. Making existing production systems Industry 4.0-ready. Prod. Eng. 2015, 9, 143–148. [Google Scholar] [CrossRef]
- Wiendahl, H. Auftragsmanagement der Industriellen Produktion: Grundlagen, Konfiguration, Einführung; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Roopaei, M.; Rad, P.; Choo, K.R. Cloud of Things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Karlov, A.A. Cybersecurity of Internet of Things—Risks and Opportunities. In Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017), Budva, Montenegro, 25–29 September 2017; pp. 182–187. [Google Scholar]
- Malavade, V.N.; Akulwar, P.K. Role of IoT in agriculture. IOSR J. Comput. Eng. 2016, 2016, 56–57. [Google Scholar]
- Basso, B.; Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Mathews, L. Florida Water Plant Hackers Exploited Old Software and Poor Password Habits. 2021. Available online: https://www.forbes.com/sites/leemathews/2021/02/15/florida-water-plant-hackers-exploited-old-software-and-poor-password-habits/?sh=78dd125c334e (accessed on 2 July 2022).
- Musotto, R.; Naser, M. Ransomware Attack on Sheep Farmers Shows There’s No Room for Woolly Thinking in Cyber Security. 2020. Available online: https://theconversation.com/ransomware-attack-on-sheep-farmers-shows-theres-no-room-for-woolly-thinking-in-cyber-security-132882 (accessed on 13 July 2022).
- Seselja, E. Cyber Attack Shuts Down Global Meat Processing Giant JBS. 2021. Available online: https://www.abc.net.au/news/2021-05-31/cyber-attack-shuts-down-global-meat-processing-giant-jbs/100178310 (accessed on 5 July 2022).
- Prasad, R.; Rohokale, V. Cyber Security: The Lifeline of Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-31702-7. [Google Scholar]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain Solutions, and Challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
- Yang, X.; Shu, L.; Chen, J.; Ferrag, M.A.; Wu, J.; Nurellari, E.; Huang, K. A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges. IEEE/CAA J. Autom. Sin. 2021, 8, 273–302. [Google Scholar] [CrossRef]
- Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 2015, 18, 1153–1176. [Google Scholar] [CrossRef]
- Tewari, A.; Gupta, B. Security, privacy and trust of different layers in internet-of-things (IoTs) framework. Future Gener. Comput. Syst. 2020, 108, 909–920. [Google Scholar] [CrossRef]
- Zhu, W.J.; Deng, M.L.; Zhou, Q.L. An intrusion detection algorithm for wireless networks based on ASDL. IEEE/CAA J. Autom. Sin. 2018, 5, 92–107. [Google Scholar] [CrossRef]
- Agarwal, M.; Purwar, S.; Biswas, S.; Nandi, S. Intrusion detection system for PS-poll DoS attack in 802.11 networks using real time discrete event system. IEEE/CAA J. Autom. Sin. 2017, 4, 792–808. [Google Scholar] [CrossRef]
- Peppes, N.; Daskalakis, E.; Alexakis, T.; Adamopoulou, E.; Demestichas, K. Performance of Machine Learning-Based Multi-Model Voting Ensemble Methods for Network Threat Detection in Agriculture 4.0. Sensors 2021, 21, 7475. [Google Scholar] [CrossRef] [PubMed]
- Meidan, Y.; Bohadana, M.; Shabtai, A.; Guarnizo, J.D.; Ochoa, M.; Tippenhauer, N.O. ProfilIoT: A Machine Learning Approach for IoT Device Identification Based on Network Traffic Analysis. In Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 4–6 April 2017; pp. 506–509. [Google Scholar]
- Alkahtani, H.; Aldhyani, T.H.; Al-Yaari, M. Adaptive anomaly detection framework model objects in cyberspace. Appl. Bionics Biomech. 2020, 2020, 6660489. [Google Scholar] [CrossRef] [PubMed]
- Ferrag, M.A.; Maglaras, L. DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart Grids. IEEE Trans. Eng. Manag. 2019, 67, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [Google Scholar] [CrossRef]
- Alkadi, O.; Moustafa, N.; Turnbull, B.; Choo, K.K.R. A Deep Blockchain Framework-enabled Collaborative Intrusion Detection for Protecting IoT and Cloud Networks. IEEE Internet Things J. 2020, 8, 9463–9472. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends. In Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Springer International Publishing: Cham, Germany, 2020; pp. 299–327. ISBN 978-3-030-35291-2. [Google Scholar]
- Barreto, L.; Amaral, A. Smart farming: Cyber security challenges. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018; pp. 870–876. [Google Scholar]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and privacy in smart farming: Challenges and opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- European Commission. Industry 4.0 in Agriculture: Focus on IoT Aspects; Digital Transformation Monitor; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Window, M. Security in Precision Agriculture: Vulnerabilities and Risks of Agricultural Systems. Master’s Thesis, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden, 2019. [Google Scholar]
- Boghossian, A.; Linsky, S.; Brown, A.; Mutschler, P.; Ulicny, B.; Barrett, L.; Bethel, G.; Matson, M.; Strang, T.; Ramsdell, K.; et al. Threats to Precision Agriculture; 2018 Public-Private Analytic Exchange Program Report; United States Department of Homeland Security and Office of Intelligence and Analysis: Washington, DC, USA, 2020. [Google Scholar]
- Demestichas, K.; Peppes, N.; Alexakis, T. Survey on Security Threats in Agricultural IoT and Smart Farming. Sensors 2020, 20, 6458. [Google Scholar] [CrossRef]
- Sontowski, S.; Gupta, M.; Chukkapalli, S.S.L.; Abdelsalam, M.; Mittal, S.; Joshi, A.; Sandhu, R. Cyber Attacks on Smart Farming Infrastructure. In Proceedings of the IEEE 6th International Conference on Collaboration and Internet Computing (CIC), Atlanta, GA, USA, 1–3 December 2020; pp. 135–143. [Google Scholar]
- Amma, N.G.B.; Selvakumar, S. Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment. Future Gener. Comput. Syst. 2020, 113, 255–265. [Google Scholar]
- Manimurugan, S.; Al-Mutairi, S.; Aborokbah, M.M.; Chilamkurti, N.; Ganesan, S.; Patan, R. Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network. IEEE Access 2020, 8, 77396–77404. [Google Scholar] [CrossRef]
- Popoola, S.I.; Adebisi, B.; Hammoudeh, M.; Gui, G.; Gacanin, H. Hybrid Deep Learning for Botnet Attack Detection in the Internet of Things Networks. IEEE Internet Things J. 2021, 8, 4944–4956. [Google Scholar] [CrossRef]
- Kohl, K.D. The Increase of Cybersecurity Threats to the Food and Agriculture Sector from Smart Agriculture. Master’s Thesis, Utica College, New York, NY, USA, 2017. [Google Scholar]
- Okupa, H. Cybersecurity and the Future of Agri-Food Industries. Master’s Thesis, Department of Agricultural Economics College of Agriculture, Kansas State University, Manhattan, KS, USA, 2020. [Google Scholar]
- Lezzi, M.; Lazoi, M.; Corallo, A. Cybersecurity for Industry 4.0 in the current literature: A reference framework. Comput. Ind. 2018, 103, 97–110. [Google Scholar] [CrossRef]
- Duncan, S.E.; Reinhard, R.; Williams, R.C.; Ramsey, F.; Thomason, W.; Lee, K.; Dudek, N.; Mostaghimi, S.; Colbert, E.; Murch, R. Cyberbiosecurity: A New Perspective on Protecting U.S. Food and Agricultural System. Front. Bioeng. Biotechnol. 2019, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manninen, O. Cybersecurity in Agricultural Communication Networks: Case Dairy Farms. Master’s Thesis, JAMK University of Applied Sciences, Jyväskylä, Finland, 2018. [Google Scholar]
- Alzahrani, A.; Aldhyani, T.H.H. Artificial Intelligence Algorithms for Detecting and Classifying MQTT Protocol Internet of Things At-tacks. Electronics 2022, 11, 3837. [Google Scholar] [CrossRef]
- Jokar, P.; Leung, V. Intrusion Detection and Prevention for ZigBee-Based Home Area Networks in Smart Grids. IEEE Trans. Smart Grid 2016, 9, 1800–1811. [Google Scholar] [CrossRef]
- Alseiari, F.A.A.; Aung, Z. Real-Time Anomaly-Based Distributed Intrusion Detection Systems for Advanced Metering Infrastructure Utilizing Stream Data Mining. In Proceedings of the International Conference on Smart Grid & Clean Energy Technologies, Offenburg, Germany, 14–15 October 2015. [Google Scholar]
- Vijayanand, R.; Devaraj, D.; Kannapiran, B. Support Vector Machine Based Intrusion Detection System with Reduced Input Featuresfor Advanced Metering Infrastructure of Smart Grid. In Proceedings of the 4th International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 1–7 January 2017. [Google Scholar]
- Jindal, A.; Dua, A.; Kaur, K. Decision Tree and SVM-Based Data Analytics for Theft Detection in Smart Grid. IEEE Trans. Ind. Inform. 2016, 12, 1005–1016. [Google Scholar] [CrossRef]
- Boumkheld, N.; Ghogho, M.; Koutbi, M.E. Intrusion Detection System for the Detection of Blackhole Attacks in a Smart Grid. In Proceedings of the 4th International Symposium on Computational and Business Intelligence, Olten, Switzerland, 5–7 September 2016. [Google Scholar]
- Aldhyani, T.H.H.; Alkahtani, H. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments. Sensors 2022, 22, 4685. [Google Scholar] [CrossRef]
- Hasan, N.; Toma, R.N.; Nahid, A.-A.; Islam, M.M.; Kim, J.-M. Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach. Energies 2019, 12, 3310. [Google Scholar] [CrossRef] [Green Version]
- Vinayakumar, R.; Soman, K.P.; Poornachandran, P. Applying Convolutional Neural Network for Network Intrusion Detection. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Karnataka, India, 13–16 September 2017. [Google Scholar]
- Sung, J. The Fourth Industrial Revolution and Precision Agriculture. In Automation in Agriculture—Securing Food Supplies for Future Generations; Hussmann, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.unb.ca/cic/datasets/ddos-2019.html (accessed on 10 July 2022).
- Alkahtani, H.; Aldhyani, T.H.H. Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices. Sensors 2022, 22, 2268. [Google Scholar] [CrossRef]
- Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K. Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks. Sensors 2021, 21, 4736. [Google Scholar] [CrossRef]
- Alkahtani, H.; Aldhyani, T.H. Intrusion Detection System to Advance Internet of Things Infrastructure-Based Deep Learning Algorithma. Complexity 2021, 2021, 5579851. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Alkahtani, H. Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors 2022, 22, 360. [Google Scholar] [CrossRef]
- Alkahtani, H.; Aldhyani, T.H.H. Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications. Secur. Commun. Netw. 2021, 2021, 3806459. [Google Scholar] [CrossRef]
- Xiaoqiang, Z.; Jingxi, T. Multiple-image encryption algorithm based on genetic central dogma. Phys. Scr. 2022, 97, 055213. [Google Scholar]
- Alzahrani, A.; Aldhyani, T.H.; Alsubari, S.N.; Alghamdi, A.D. Network Traffic Forecasting in Network Cybersecurity: Granular Computing Model. Secur. Commun. Netw. 2022, 2022, 3553622. [Google Scholar] [CrossRef]
- Jia, Y.; Zhong, F.; Alrawais, A.; Gong, B.; Cheng, X. Flowguard: An intelligent edge defense mechanism against IoT DDoS attacks. IEEE Internet Things J. 2020, 7, 9552–9562. [Google Scholar] [CrossRef]
- de Assis, M.V.; Carvalho, L.F.; Rodrigues, J.J.; Lloret, J.; Proença, M.L., Jr. Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 2020, 86, 106738. [Google Scholar] [CrossRef]
- Alamri, H.A.; Thayananthan, V. Bandwidth Control Mechanism and Extreme Gradient Boosting Algorithm for Protecting Software-Defined Networks Against DDoS Attacks. IEEE Access 2020, 8, 194269–194288. [Google Scholar] [CrossRef]
Volume | Attacks CICDDoS2019 | #No |
---|---|---|
7118 | Normal | 1 |
7491 | NetBIOS | 2 |
7015 | Portmap | 3 |
8513 | Syn | 4 |
6051 | UDPlag | 5 |
1873 | UD | 6 |
Testing | Training | Attacks |
---|---|---|
1449 | 5669 | Normal |
1518 | 5973 | NetBIOS |
1393 | 5622 | Portmap |
1688 | 6825 | Syn |
1180 | 4871 | UDPlag |
385 | 1488 | UD |
#Parameters Indicators | #Values |
---|---|
Convolution layer | 512 |
The size of max pooling | 5 |
Drop out | 0.50 |
The size of the FC layer | 64 |
Activation function | ReLU |
Optimizer | RMSprop |
Epochs | 20 |
Batch size | 150 |
DDoS Attacks | Precision % | Recall % | F1-Score % |
---|---|---|---|
Normal | 99 | 43 | 60 |
NetBIOS | 55 | 64 | 59 |
Portmap | 54 | 86 | 67 |
Syn | 76 | 81 | 78 |
UDPLag | 50 | 49 | 50 |
UDP | 0.00 | 0.00 | 0.00 |
Accuracy% | 62 | ||
Weighted average | 64 | 62 | 60 |
Time | 23.05 s |
DDoS Attacks | Precision % | Recall % | F1-Score % |
---|---|---|---|
Normal | 100 | 100 | 100 |
NetBIOS | 100 | 100 | 100 |
Portmap | 100 | 100 | 100 |
Syn | 100 | 100 | 100 |
UDPLag | 100 | 100 | 100 |
UDP | 100 | 100 | 100 |
Accuracy% | 100 | 100 | 100 |
Weighted average | 100 | 100 | 100 |
Time | 25.62 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhyani, T.H.H.; Alkahtani, H. Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model. Mathematics 2023, 11, 233. https://doi.org/10.3390/math11010233
Aldhyani THH, Alkahtani H. Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model. Mathematics. 2023; 11(1):233. https://doi.org/10.3390/math11010233
Chicago/Turabian StyleAldhyani, Theyazn H. H., and Hasan Alkahtani. 2023. "Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model" Mathematics 11, no. 1: 233. https://doi.org/10.3390/math11010233
APA StyleAldhyani, T. H. H., & Alkahtani, H. (2023). Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model. Mathematics, 11(1), 233. https://doi.org/10.3390/math11010233