Design of Ganymede-Synchronous Frozen Orbit around Europa
Abstract
:1. Introduction
2. Dynamic Model
2.1. Dynamical Model of Europa Probe
2.2. Legendre Expansion
3. Long-Term Evolution and Analysis
3.1. Double-Averaging Method
3.2. Mean Motion of the Probe around Europa
3.3. Sensitivity Analysis
4. Design of a Ganymede-Synchronous Frozen Orbit
4.1. Conditions of Synchronous Frozen Orbit
4.2. Preliminary Design of a Ganymede-Synchronous Frozen Orbit
Algorithm 1 Design Method for a Ganymede-Synchronous Frozen Orbit |
Input: Semi-major axis a, eccentricity e; Output: Inclination i, initial phase angle Ω − uE, argument of periapsis 1: Assign as the initial conditions; 2: Assign as the expected rate of change of the longitude of ascending node; 3. Main |
4: Inclination ; 5: DIZL and DWZL ; 6: Initial phase angle and argument of periapsis ; 7: end |
4.3. Orbit Maintenance with Accurate Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Campagnola, S.; Buffington, B.B.; Lam, T.; Petropoulos, A.E.; Pellegrini, E. Tour design techniques for the Europa Clipper mission. J. Guid. Control. Dyn. 2019, 42, 2615–2626. [Google Scholar] [CrossRef]
- Bayer, T.; Bittner, M.; Buffington, B.; Castet, J.F.; Dubos, G.; Jackson, M.; Lee, G.; Lewis, K.; Kastner, J.; Schimmels, K.; et al. Europa clipper mission update: Preliminary design with selected instruments. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–19. [Google Scholar] [CrossRef]
- Dougherty, M.K.; Grasset, O.; Bunce, E.; Coustenis, A.; Titov, D.V.; Erd, C.; Blanc, M.; Coates, A.J.; Coradini, A.; Drossart, P.; et al. JUICE (JUpiter ICy moon Explorer): A European-led mission to the Jupiter system. EPSC-DPS Jt. Meet. 2011, 2011, 1343. [Google Scholar]
- Kozai, Y. The motion of a close earth satellite. Astron. J. 1959, 64, 367. [Google Scholar] [CrossRef]
- Ely, T.A. Mean element propagations using numerical averaging. J. Astronaut. Sci. 2014, 61, 275–304. [Google Scholar] [CrossRef]
- Scheeres, D.J.; Hu, W. Secular motion in a 2nd degree and order-gravity field with no rotation. Celest. Mech. Dyn. Astron. 2001, 79, 183–200. [Google Scholar] [CrossRef]
- de Almeida Prado, A.F.B. Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 2003, 26, 33–40. [Google Scholar] [CrossRef]
- Baresi, N.; Scheeres, D.J.; Schaub, H. Bounded relative orbits about asteroids for formation flying and applications. Acta Astronaut. 2016, 123, 364–375. [Google Scholar] [CrossRef]
- Fu, T.; Wang, Y. Orbital Stability Around the Primary of a Binary Asteroid System. J. Guid. Control Dyn. 2021, 44, 1607–1620. [Google Scholar] [CrossRef]
- Anderson, J.D.; Schubert, G.; Jacobson, R.A.; Lau, E.L.; Moore, W.B.; Sjogren, W.L. Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science 1998, 281, 2019–2022. [Google Scholar] [CrossRef]
- Scheeres, D.J.; Guman, M.D.; Villac, B.F. Stability analysis of planetary satellite orbiters: Application to the Europa orbiter. J. Guid. Control Dyn. 2001, 24, 778–787. [Google Scholar] [CrossRef]
- Low, S.Y.W.; Moon, Y.; Tao, L.W.; Tan, C.W. Designing a reference trajectory for frozen repeat near-equatorial low earth orbits. J. Spacecr. Rocket. 2022, 59, 84–93. [Google Scholar] [CrossRef]
- Broucke, R.A. Long-term third-body effects via double averaging. J. Guid. Control Dyn. 2003, 26, 27–32. [Google Scholar] [CrossRef]
- Lara, M. Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 2008, 31, 172–181. [Google Scholar] [CrossRef]
- Hesar, S.G.; Scheeres, D.J.; McMahon, J.W. Sensitivity analysis of the OSIRIS-REx terminator orbits to maneuver errors. J. Guid. Control Dyn. 2017, 40, 81–95. [Google Scholar] [CrossRef]
- Abouelmagd, E.I. Periodic solution of the two–body problem by KB averaging method within frame of the modified newtonian potential. J. Astronaut. Sci. 2018, 65, 291–306. [Google Scholar] [CrossRef]
- Cinelli, M.; Ortore, E.; Circi, C. Long lifetime orbits for the observation of Europa. J. Guid. Control Dyn. 2019, 42, 123–135. [Google Scholar] [CrossRef]
- Macdonald, M.; McKay, R.; Vasile, M.; Frescheville, F.B.D. Extension of the sun-synchronous orbit. J. Guid. Control Dyn. 2010, 33, 1935–1940. [Google Scholar] [CrossRef] [Green Version]
- Byram, S.M.; Scheeres, D.J. Stability of sun-synchronous orbits in the vicinity of a comet. J. Guid. Control Dyn. 2009, 32, 1550–1559. [Google Scholar] [CrossRef] [Green Version]
- Ugai, S.; Ichikawa, A. Lunar Synchronous Orbits in the Earth-Moon Circular-Restricted Three-Body Problem. J. Guid. Control Dyn. 2010, 33, 995–1000. [Google Scholar] [CrossRef]
- Jaworski, S.; Kindracki, J. Feasibility of Synchronized CubeSat Missions from Low Earth Orbit to Near-Earth Asteroids. J. Spacecr. Rocket. 2020, 57, 1232–1245. [Google Scholar] [CrossRef]
- Anderson, J.D.; Jacobson, R.A.; Lau, E.L.; Moore, W.B.; Schubert, G. Io’s gravity field and interior structure. J. Geophys. Res. Planets 2001, 106, 32963–32969. [Google Scholar] [CrossRef]
- Anderson, J.D.; Jacobson, R.A.; Lau, E.L.; Moore, W.B.; Olsen, O.; Schubert, G.; Thomas, P.C. Shape, mean radius, gravity field and interior structure of Ganymede. AAS/Div. Planet. Sci. Meet. Abstr. 2001, 33, 35–39. [Google Scholar]
- Anderson, J.D.; Jacobson, R.A.; McElrath, T.P.; Moore, W.B.; Schubert, G.; Thomas, P.C. Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 2001, 153, 157–161. [Google Scholar] [CrossRef]
- Wang, G.B.; Meng, Y.H.; Zheng, W.; Tang, G.J. Artificial Sun synchronous frozen orbit control scheme design based on J 2 perturbation. Acta Mech. Sin. 2011, 27, 809–816. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, F.; Li, J. Artificial Martian frozen orbits and Sun-Synchronous orbits using continuous low-thrust control. Astrophys. Space Sci. 2014, 352, 503–514. [Google Scholar] [CrossRef]
- Ho, K.; Wang, H.; DeTrempe, P.A.; du Jonchay, T.S.; Tomita, K. Semi-Analytical Model for Design and Analysis of On-Orbit Servicing Architecture. J. Spacecr. Rocket. 2020, 57, 1129–1138. [Google Scholar] [CrossRef]
- Chujo, T.; Takao, Y. Synodic Resonant Halo Orbits of Solar Sails in Restricted Four-Body Problem. J. Spacecr. Rocket. 2022, 56, 2129–2147. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
μJ | 126,686,534.9218 km3/s2 |
μE | 3202.74 km3/s2 |
μG | 9887.83 km3/s2 |
J2,E | 0.0004355 |
RE | 1560.8 km |
aE | 671,100 km |
eE | 0.0094 |
iE | 0.465° |
aG | 1,070,587.5 km |
eG | 0.00195 |
iG | 0.135° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yang, B.; Li, S.; Feng, J.; Masdemont, J.J. Design of Ganymede-Synchronous Frozen Orbit around Europa. Mathematics 2023, 11, 41. https://doi.org/10.3390/math11010041
Huang X, Yang B, Li S, Feng J, Masdemont JJ. Design of Ganymede-Synchronous Frozen Orbit around Europa. Mathematics. 2023; 11(1):41. https://doi.org/10.3390/math11010041
Chicago/Turabian StyleHuang, Xuxing, Bin Yang, Shuang Li, Jinglang Feng, and Josep J. Masdemont. 2023. "Design of Ganymede-Synchronous Frozen Orbit around Europa" Mathematics 11, no. 1: 41. https://doi.org/10.3390/math11010041
APA StyleHuang, X., Yang, B., Li, S., Feng, J., & Masdemont, J. J. (2023). Design of Ganymede-Synchronous Frozen Orbit around Europa. Mathematics, 11(1), 41. https://doi.org/10.3390/math11010041