Next Article in Journal
Liouville-Type Theorem for Nonlinear Elliptic Equations Involving Generalized Greiner Operator
Next Article in Special Issue
The Novel Analytical–Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions
Previous Article in Journal
A Method for Augmenting Supersaturated Designs with Newly Added Factors
Previous Article in Special Issue
The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

C1-Cubic Quasi-Interpolation Splines over a CT Refinement of a Type-1 Triangulation

by
Haithem Benharzallah
1,
Abdelaziz Mennouni
1 and
Domingo Barrera
2,*
1
Department of Mathematics, LTM, University of Batna 2, Mostefa Ben Boulaïd, Fesdis, Batna 05078, Algeria
2
Department of Applied Mathematics, University of Granada, 18071 Granada, Spain
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(1), 59; https://doi.org/10.3390/math11010059
Submission received: 5 October 2022 / Revised: 13 December 2022 / Accepted: 19 December 2022 / Published: 23 December 2022
(This article belongs to the Special Issue Computational Methods and Applications for Numerical Analysis)

Abstract

:
C 1 continuous quasi-interpolating splines are constructed over Clough–Tocher refinement of a type-1 triangulation. Their Bernstein–Bézier coefficients are directly defined from the known values of the function to be approximated, so that a set of appropriate basis functions is not required. The resulting quasi-interpolation operators reproduce cubic polynomials. Some numerical tests are given in order to show the performance of the approximation scheme.

1. Introduction

A novel, non-standard technique for constructing bivariate quasi-interpolating splines over uniform partitions was proposed by T. Sorokina and F. Zeilfelder in [1,2] (see also [3,4]). The essential idea of this methodology is to define the quasi-interpolant by directly providing the coefficients of the Bernstein–Bézier (BB-) form of its restriction to each of the subsets forming the partition.
In [2], the construction of C 1 quartic quasi-interpolants over a type-1 triangulation is addressed, so that the largest polynomial space is reproduced, namely the space P 3 of polynomials of total degree less than or equal to three (see Figure 1). The coefficients of the quasi-interpolant on each triangle are linear combinations of function values at vertices and midpoints in a neighborhood of the triangle. The quasi-interpolant is constructed from them.
In [1], the same strategy is applied to construct C 1 quadratic quasi-interpolants on a triangulation which the authors called of type-2. Starting from a decomposition of the plane into squares, each of them is divided into eight micro-triangles by means of its diagonals and the straight lines parallel to the coordinate axes passing through the center of the square (see Figure 1).
The problem addressed in [2] is studied in detail in [5], proving that the approximation scheme proposed in [2] is a particular choice in a 19-parametric family of schemes. Moreover, different strategies for assigning values to the parameters are provided. In both [2] and [5], the quasi-interpolating splines interpolate the values at the vertices and the masks associated with the domain points that are key to the construction are applied taking into account the symmetries of the triangulation involved. Since the triangulation is uniform, these masks are independent of the specific triangle on which the quasi-interpolant is calculated (see also [6]).
Later, the cubic case was dealt with in [7], on the same triangulation used to construct quartic quasi-interpolants. The aim was to construct a C 1 cubic one, exact on P 2 , from the values at vertices and midpoints. Since it is not possible to define a quasi-interpolant that interpolates values at vertices, the authors opted to find specific masks for key domain points, including vertices, without imposing any symmetry. It was proved that there are unique masks that satisfy the required properties. Not being possible to achieve exactness on P 3 , this paper presents a construction on a refinement of the initial type-1 triangulation in order to achieve the optimal approximation order. Specifically, we work on a Clough–Tocher (CT-) refinement [8], which produces a subdivision into six micro-triangles of each square formed by two macro-triangles sharing an edge.
The rest of the paper is structured as follows. In Section 2, a type-1 triangulation endowed with a Clough–Tocher refinement is introduced, as well as the space of C 1 cubic splines defined over it. Further, a partition of the domain points associated with the micro-triangles is provided. In Section 3, the construction of quasi-interpolating splines is given and the general solution of the resulting problem. In Section 4, a method for selecting parameters based on the minimization of an upper bound of the quasi-interpolation error associated with the quartic monomials is proposed. In Section 5, the results of some numerical tests are given to illustrate the performance of the quasi-interpolation operator relative to the selected parameters. Finally, some details are included in Appendix A.

2. Bernstein–Bézier Form of Cubic Splines on a Type-1 Triangulation

Let us suppose that the triangulation is spanned by the vectors e 1 : = h , h and e 2 : = h , h , with h > 0 . Its vertices are v i , j : = i e 1 + j e 2 , which define the lattice V : = v i , j , i , j Z . These vertices define squares which can be decomposed into the triangles T i , j v i , j , v i + 1 , j + 1 , v i + 1 , j and B i , j v i , j , v i + 1 , j + 1 , v i , j + 1 (see Figure 2). Therefore, a type-1 triangulation results:
Δ : = i , j Z T i , j B i , j .
When there is no need to distinguish between the types of triangles in Δ , we denote by T any one of them.
To define the refinement of Δ to be used, let
t i , j : = 1 3 v i , j + v i + 1 , j + 1 + v i + 1 , j and b i , j : = 1 3 v i , j + v i + 1 , j + 1 + v i , j + 1
be the barycenters of T i , j and B i , j , respectively. Then, the CT-refinement of each triangle is obtained by joining its vertices with its barycenter [8]. Each macro-triangle T i , j and B i , j is, respectively, divided into the following micro-triangles:
t 1 + = v i , j , v i + 1 , j + 1 , t i , j , t 2 + = v i + 1 , j + 1 , v i + 1 , j , t i , j , t 3 + = v i + 1 , j , v i , j , t i , j , t 1 = v i , j , v i , j + 1 , b i , j , t 2 = v i , j + 1 , v i + 1 , j + 1 , b i , j , t 3 = v i + 1 , j + 1 , v i , j , b i , j .
They are shown in Figure 2, bottom, where any reference to the subscripts of the micro-triangles has been avoided. As in the case of macro-triangles, the lower case letter t will be used to represent any of the micro-triangles of Δ CT .
In this paper, we consider the space of C 1 cubic splines on Δ CT defined by
S 3 1 Δ CT : = s C 1 R 2 : s t P 3 for all t Δ CT .
where the restriction is s t of s S 3 1 Δ CT to a micro-triangle t = V 1 , V 2 , V 3 Δ CT a cubic polynomial, it can be represented using the cubic Bernstein polynomials
B β , t p : = 3 ! β ! τ β = 6 β 1 ! β 2 ! β 3 ! τ 1 β 1 τ 2 β 2 τ 3 β 3 ,
where the multi-index notations β : = β 1 , β 2 , β 3 N 0 3 , | β | : = β 1 + β 2 + β 3 and β ! : = β 1 ! β 2 ! β 3 ! have been used, and τ : = τ 1 , τ 2 , τ 3 provides the barycentric coordinates of point p R 2 with respect to t, i.e., p = i = 1 3 τ i V i and i = 1 3 τ i = 1 . The coordinates τ 1 , τ 2 and τ 3 are non-negative whenever p belongs to t.
Every polynomial q P 3 can be expressed on t in terms of the cubic Bernstein basis polynomials B β , t , | β | = 3 , i.e., there exist values b β such that
q x , y = q ( τ ) = | β | = 3 b β , t B β , t τ .
Coefficients in D t : = b β , t , | β | = 3 are said to be the Bernstein–Bézier (BB-) coefficients of q. They are linked to the domain points ξ β , t determined by the barycentric coordinates β 1 , t 3 , β 2 , t 3 , β 3 , t 3 with respect to t. They determine the lattice L 3 t . The graph of q on t is included in the convex hull of ξ β , t , b β , t , | β | = 3 .
On each micro-triangle, an element s S 3 1 Δ CT is uniquely determined by ten BB-coefficients, associated with the corresponding domain points. When all macro-triangles are taken into account, a subset of domain points is obtained, which we note D 3 Δ CT , i.e., D 3 Δ CT = t Δ CT L 3 t , where the union is formed without taking repetitions into account. To determine s, it is necessary to give the BB-coefficients associated with all the points of D 3 Δ CT . As the triangulation is uniform, following the approach in [2,4,5,6], it is sufficient to establish a partition D i , j , i , j Z of D 3 Δ CT and define the BB-coefficients linked to the domain points in D i , j .
Figure 3 shows the twenty-seven domain points forming D i , j , which are linked to vertex v i , j . Each of them has the subscripts of v i , j . The vertices and barycenter have already been defined. They remaining domain points in D i , j are given next:
u i , j 1 , 1 : = 1 3 ( 2 v i , j + v i + 1 , j + 1 ) , u i , j 1 , 0 : = 1 3 ( 2 v i , j + v i + 1 , j ) , u i , j 2 , 1 : = 1 3 ( 2 v i , j + t i , j ) , u i , j 1 , 1 : = 1 3 ( 2 v i , j + v i 1 , j 1 ) , u i , j 1 , 1 : = 1 3 ( 2 v i , j + b i , j 1 ) , u i , j 0 , 1 : = 1 3 ( 2 v i , j + v i , j 1 ) , u i , j 1 , 2 : = 1 3 ( 2 v i , j + t i 1 , j 1 ) , u i , j 2 , 1 : = 1 3 ( 2 v i , j + b i 1 , j 1 ) , u i , j 1 , 0 : = 1 3 ( 2 v i , j + v i 1 , j ) , u i , j 1 , 1 : = 1 3 ( 2 v i , j + t i 1 , j ) , u i , j 0 , 1 : = 1 3 ( 2 v i , j + v i , j + 1 ) , u i , j 1 , 2 : = 1 3 ( 2 v i , j + b i , j ) , x i , j 1 , 1 : = 1 3 ( v i , j + v i + 1 , j + 1 + b i , j ) , x i , j 1 , 0 : = 1 3 ( v i , j + v i + 1 , j + b i , j 1 ) , x i , j 0 , 1 : = 1 3 ( v i , j + v i , j + 1 + b i , j ) , y i , j 2 , 1 : = 1 3 ( v i , j + 2 t i , j ) , y i , j 1 , 1 : = 1 3 ( v i , j + 2 b i , j 1 ) , y i , j 1 , 2 : = 1 3 ( v i , j + 2 t i 1 , j 1 ) , y i , j 2 , 1 : = 1 3 ( v i , j + 2 b i 1 , j 1 ) , y i , j 1 , 1 : = 1 3 ( v i , j + 2 t i 1 , j ) y i , j 1 , 2 : = 1 3 ( v i , j + 2 b i , j ) , z i , j 1 , 1 : = 1 3 ( v i , j + v i + 1 , j + 1 + t i , j ) , z i , j 1 , 0 : = 1 3 ( v i , j + v i + 1 , j + t i , j ) , z i , j 0 , 1 : = 1 3 ( v i , j + v i , j + 1 + t i 1 , j ) .
Figure 4 shows the domain points in D lying in the hexagon formed by the six triangles sharing the vertex v i , j .

3. C 1 Quasi-Interpolating Splines on a Clough–Tocher Refinement

The main objective of this work is to construct a quasi-interpolation operator for S 3 1 Δ CT that is exact on P 3 in order to improve the result obtained in [7]. Let us denote it as Q . It is assumed that the values of a function f are known at the domain points in D 3 Δ CT .
The quasi-interpolant Q f S 3 1 Δ CT of f should be constructed in such a way that the BB-coefficients of the restriction Q f t to each micro-triangle t Δ CT are defined as combinations of those values of f. In other words, Q f t is written in the basis of Bernstein polynomials B β , t , β = 3 , as
Q f t = γ Δ 3 P γ B γ , t ,
where P γ denotes the BB-coefficient associated with the domain point p γ t , Δ 3 is the set of indices with length equal to 3 written in the lexicographical order, i.e.,
Δ 3 = 3 , 0 , 0 , 2 , 1 , 0 , 2 , 0 , 1 , 1 , 2 , 0 , 1 , 1 , 1 , 1 , 0 , 2 , 0 , 3 , 0 , 0 , 2 , 1 , 0 , 1 , 2 , 0 , 0 , 3
and the vertices of each micro-triangle follow in the order they appear in (1).
For instance, with regard to the micro-triangle t 1 + of T i , j (see Figure 5) we write
Q f t 1 + = V i , j B ( 3 , 0 , 0 ) , t 1 + + U i , j 1 , 1 B ( 2 , 1 , 0 ) , t 1 + + U i , j 2 , 1 B ( 2 , 0 , 1 ) , t 1 + + U i + 1 , j + 1 1 , 1 B ( 1 , 2 , 0 ) , t 1 + + Z i , j 1 , 1 B ( 1 , 1 , 1 ) , t 1 + + Y i , j 2 , 1 B ( 1 , 0 , 2 ) , t 1 + + V i + 1 , j + 1 B ( 0 , 3 , 0 ) , t 1 + + U i + 1 , j + 1 1 , 2 B ( 0 , 2 , 1 ) , t 1 + + Y i + 1 , j + 1 1 , 2 B ( 0 , 1 , 2 ) , t 1 + + T i , j B ( 0 , 0 , 3 ) , t 1 + .
Similar expressions are obtained for the restrictions of Q f to the other two micro-triangles of T i , j and those three into which B i , j is divided.
The BB-coefficients involved in the definition of Q f on each micro-triangle of T i . j and B i , j will be linear combinations of f at the specific domain points for cubic polynomials lying in the hexagon defined by the triangles sharing vertex v i , j . Specifically, the union without repetitions D 3 Δ : = T Δ L 3 T is formed and decomposed as
D 3 Δ = i , j Z S i , j ,
where the ordered subset S i , j consists of the thirty-seven domain points given below:
S i , j : = v i , j , u i , j 1 , 1 , u i , j 1 , 0 , u i , j 0 , 1 , u i , j 1 , 1 , u i , j 1 , 0 , u i , j 0 , 1 , u i + 1 , j + 1 1 , 1 , t i , j , u i + 1 , j 1 , 0 , b i , j 1 , u i , j 1 0 , 1 , t i 1 , j 1 , u i , j 1 1 , 1 , b i 1 , j 1 , u i 1 , j 1 , 0 , t i 1 , j , u i , j + 1 0 , 1 , b i , j , v i + 1 , j + 1 , u i + 1 , j + 1 0 , 1 , u i + 1 , j 0 , 1 , v i + 1 , j , u i + 1 , j 1 , 1 , u i , j 1 1 , 1 , v i , j 1 , u i , j 1 1 , 0 , u i 1 , j 1 1 , 0 , v i 1 , j 1 , u i 1 , j 1 0 , 1 , u i 1 , j 0 , 1 , v i 1 , j , u i 1 , j 1 , 1 , u i , j + 1 1 , 1 , v i , j + 1 , u i , j + 1 1 , 0 , u i + 1 , j + 1 1 , 0 .
The BB-coefficient P of a domain point p is a linear combination of values of f at points in S i , j , its coefficients give rise to a vector M p , ordered as S i , j , which is said to be the mask of p. If f S i , j : = f p , p S i , j is also ordered as S i , j , then
P = M p · f S i , j : = = 1 37 M p f S i , j ,
where M p and f S i , j stand for the -th entries of M p and f S i , j , respectively.
In the following, we state the problem that is the object of this work.
Problem 1.
Find masks for the domain points in D i , j such that the associated quasi-interpolation operator Q is exact on P 3 and produces C 1 quasi-interpolating splines.
The following result holds.
Proposition 2.
Problem 1 has a 17-parametric family of solutions.
Proof
Given an arbitrary function f, C 1 continuity of Q f across segment v i , j , v i + 1 , j is equivalent to the following conditions [9] (Thm. 2.28) (see Figure 6 and the notations used for the domain points in Figure 3 and Figure 4):
V i , j + U i , j 1 , 0 U i , j 1 , 1 U i , j 2 , 1 = 0 , U i , j 1 , 0 + U i + 1 , j 1 , 0 X i , j 1 , 0 Z i , j 1 , 0 = 0 , U i + 1 , j 1 , 0 + V i + 1 , j U i + 1 , j 2 , 1 U i + 1 , j 1 , 1 = 0 .
For v i , j , v i + 1 , j + 1 ,
V i , j + U i , j 1 , 1 U i , j 2 , 1 U i , j 1 , 2 = 0 , U i , j 1 , 1 + U i + 1 , j + 1 1 , 1 X i , j 1 , 1 Z i , j 1 , 1 = 0 , U i + 1 , j + 1 1 , 1 + V i + 1 , j + 1 U i + 1 , j + 1 1 , 2 U i + 1 , j + 1 2 , 1 = 0 .
And for v i , j , v i , j + 1 ,
V i , j + U i , j 0 , 1 U i , j 1 , 1 U i , j 1 , 2 = 0 , U i , j 0 , 1 + U i , j + 1 0 , 1 Z i , j 0 , 1 X i , j 0 , 1 = 0 , U i , j + 1 0 , 1 + V i , j + 1 U i , j + 1 1 , 2 U i , j + 1 1 , 1 = 0 .
Regarding micro-edges, C 1 continuity across v i , j , t i , j is equivalent to conditions
U i , j 2 , 1 1 3 V i , j + U i , j 1 , 0 + U i , j 1 , 1 = 0 , Y i , j 2 , 1 1 3 U i , j 2 , 1 + Z i , j 1 , 0 + Z i , j 1 , 1 = 0 .
Similarly, it is satisfied across v i + 1 , j , t i , j and v i + 1 , j + 1 , t i , j , respectively, if and only if
U i + 1 , j 1 , 1 1 3 V i + 1 , j + U i + 1 , j 1 , 0 + U i + 1 , j 0 , 1 = 0 , Y i + 1 , j + 1 1 , 1 1 3 U i + 1 , j 1 , 1 + Z i , j 1 , 0 + Z i + 1 , j 0 , 1 = 0 ,
and
U i + 1 , j + 1 1 , 2 1 3 V i + 1 , j + 1 + U i + 1 , j + 1 1 , 1 + U i + 1 , j + 1 0 , 1 = 0 , Y i + 1 , j + 1 1 , 2 1 3 U i + 1 , j + 1 1 , 2 + Z i , j 1 , 1 + Z i + 1 , j 0 , 1 = 0 .
For the micro-sides of macro-triangle B i , j , six new conditions are involved. For v i , j , b i , j , v i , j + 1 , b i , j and v i + 1 , j + 1 , b i , j , C 1 regularity is equivalent to
U i , j 1 , 2 1 3 V i , j + U i , j 0 , 1 + U i , j 1 , 1 = 0 , Y i , j 1 , 2 1 3 U i , j 1 , 2 + X i , j 1 , 1 + X i , j 0 , 1 = 0 ,
U i , j + 1 1 , 1 1 3 V i , j + 1 + U i , j + 1 0 , 1 + U i , j + 1 1 , 0 = 0 , Y i , j + 1 1 , 1 1 3 U i , j + 1 1 , 1 + X i , j 0 , 1 + X i , j + 1 1 , 0 = 0 ,
and
U i + 1 , j + 1 2 , 1 1 3 V i + 1 , j + 1 + U i + 1 , j + 1 1 , 1 + U i + 1 , j + 1 1 , 0 = 0 , Y i + 1 , j + 1 2 , 1 1 3 U i + 1 , j + 1 2 , 1 + X i , j 1 , 1 + X i , j + 1 1 , 0 = 0 ,
respectively. Finally, C 1 continuity at the barycenters of T i , j and B i , j is obtained if and only if
T i , j 1 3 Y i , j 2 , 1 + Y i + 1 , j + 1 1 , 2 + Y i + 1 , j 1 1 , 1 = 0 , B i , j 1 3 Y i , j 1 , 2 + Y i + 1 , j + 1 2 , 1 + Y i , j + 1 1 , 1 = 0 .
These are all equalities involving the values f p , p S i , j , so Q f is C 1 continuous if and only if all the coefficients of the f-values in these equalities are zero. Therefore, the requirements on the C 1 continuity are equivalent to a system of equations having a 122-parametric family of solutions. To these equations must be added those related to the exactness of the operator on P 3 . They are obtained by imposing that the BB-coefficients on each microtriangle of the monomials of degree less than or equal to three and those of their quasi-interpolants are equal. The resulting system can be solved with a Computer Algebra System, namely, Mathematica, obtaining the existence of a 17-parametric family of solutions. The free parameters are entries with indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20, 21, and 22 of the mask M b i , j . □
Figure 7 shows the mask relative to vertex v i , j . The entries of the masks for u i , j 0 , 1 , u i , j 1 , 2 , u i , j 2 , 1 and u i , j 1 , 0 are almost all zero, and the following expressions for their BB-coefficients are found:
U i , j 1 , 0 = 5 6 f v i , j + 3 f u i , j 1 , 0 3 2 f u i , j 1 0 , 1 + 1 3 f v i , j 1 , U i , j 0 , 1 = 5 6 f v i , j 3 2 f u i , j 1 , 0 + 3 f u i , j 1 0 , 1 + 1 3 f v i + 1 , j + 1 , U i , j 1 , 2 = 5 6 f v i , j + f u i , j 1 , 0 + 2 f u i , j 0 , 1 1 2 f u i , j 1 0 , 1 f u i + 1 , j 1 , 0 + 2 9 f v i + 1 , j + 1 + 1 9 f v i , j 1 , U i , j 2 , 1 = 5 6 f v i , j + 2 f u i , j 1 , 0 + f u i , j 0 , 1 f u i , j 1 0 , 1 1 2 f u i + 1 , j 1 , 0 + 1 9 f v i + 1 , j + 1 + 2 9 f v i , j 1 .
Fourteen of the masks relative to the remaining twenty-two domain points in D i , j do not depend on any parameters and appear in Appendix A. Those of t i , j , b i , j , y i , j 1 , 2 , y i , j 2 , 1 , y i , j 1 , 2 , y i , j 2 , 1 , x i , j 1 , 1 , and z i , j 1 , 1 have very long entries and will not be given.
Remark 1.
It can be proved that it is not possible to obtain quasi-interpolants with the required characteristics if the BB-coefficients are linear combinations of function values at the vertices lying in the hexagon H i , j determined by the six triangles sharing vertex v i , j , and the midpoints of the edges of H i , j . Neither is it possible to construct C 1 cubic quasi-interpolants exact on P 3 in this way if function values at v i , j and at the eighteen vertices closest to it are used.
Moreover, quasi-interpolation error estimates are found using a standard procedure [2].
Proposition 3.
There exists an absolute constant K such that for every f C m + 1 R 2 , 0 m 2 ,
D γ f Q f , T K h m + 1 γ D m + 1 f , Ω T ,
for all 0 γ 1 , γ = ( γ 1 , γ 2 ) , with Ω T denoting the union of the triangles in Δ having a non-empty intersection with T.

4. Selecting Parameters

An obvious choice is to make all parameters equal to zero. However, a reasonable strategy is to minimize an upper bound of the quasi-interpolation error for monomials of smaller degree non reproduced by the quasi-interpolation operator, namely m k , 4 k x , y : = x k y 4 k , k = 0 , 1 , 2 , 3 , 4 . Let us suppose that the BB-coefficients of m k , 4 k relative to each micro-triangle t + , = 1 , 2 , 3 , of T i , j are μ k , β , t + , β = 4 , and that those of the cubic quasi-interpolant Q m k , 4 k are b k , γ , t + , γ = 4 . By degree elevation, Q m k , 4 k t + can be represented as a quartic polynomial having BB-coefficients b k , β , t + , β = 4 , which depend on parameters z r : = M b i , j r , 1 r 12 , and z r : = M b i , j r + 5 , 13 r 17 . Therefore, the BB-coefficients of the restriction of m k , 4 k Q m k , 4 k to t + have the form
σ k , t + z = c k , t + + r = 1 17 c k , t + r z r
for real values c k , t + and c k , t + r , where z : = z 1 , , z 17 . Since the Bernstein polynomials relative to t + form a partition of unity, then the infinity norm of m k , 4 k Q m k , 4 k is bounded by
max σ k , t + z , = 1 , 2 , 3 .
Consequently, an upper bound for the quasi-interpolation errors for quartic monomials in the macro-triangle T i , j is
U + z : = max σ k , t + z , = 1 , 2 , 3 ; k = 0 , 1 , 2 , 3 , 4 .
Analogously, an upper bound of such errors in the macro-triangle B i , j is written as
U z : = max σ k , t z , = 1 , 2 , 3 ; k = 0 , 1 , 2 , 3 , 4 ,
where
σ k , t z = c k , t + r = 1 17 c k , t . r z r ,
for real values c k , t and c k , t . r . In short, the function
U z : = max U + z , U z
is an upper bound for the quasi-interpolation errors for quartic monomials in the square T i , j B i , j .
Function U can be rewritten as
U z = max 1 α 30 1 c α d α + β = 1 17 e α , β f α , β · z ,
where c α , d α , e α , β N , f α , β Z 17 and A · B : = s = 1 17 A s B s . The number of terms involved in each sum depends on α , because some of them will be zero. Therefore, the minimization of U is equivalent to the following linear programming problem:
Minimize μ such that d α + β = 1 17 e α , β u α , β + v α , β c α μ 0 , 1 α 30 , f α , β · Z + Z u α , β + v α , β = 0 , 1 α 30 , 1 β 17 , u p , n , v p , n , X 1 , X 2 , Y 1 , Y 2 , Z 1 , Z 2 , μ 0 ,
where it has been used that each variable z r can be written as z r = z r + z r , z r + , z r 0 , therefore Z = Z + Z , with Z + : = z 1 + , , z 17 + and Z : = z 1 , , z 17 . The solution of this problem has been exactly determined by using Mathematica, and the minimum value μ = 35971348390906381 87945041427390 is reached at
Z 3 + = 33654106472661220639 24647711830550794440 , Z 6 = 28931119278287059059781 79874153306877553434720 , Z 7 = 147713415264798351289 49295423661101588880 , Z 9 = 71687410464642966611 49295423661101588880 , Z 10 = 3723562194545339719095199 1118238146296285748086080 , Z 12 = 3459921708110971652593 12288331277981162066880 , Z 13 = 1437915323322245022121277 1863730243827142913476800 , Z 15 + = 9334610941403380115035381 10064143316666571732774720 ,
being equal to zero all the remaining values. Therefore, the minimum is attained at point z * with components z r * = 0 for r 1 , 2 , 4 , 5 , 8 , 11 , 14 , 16 , 17 , and
z 3 * = 33654106472661220639 24647711830550794440 , z 6 * = 28931119278287059059781 79874153306877553434720 , z 7 * = 147713415264798351289 49295423661101588880 , z 9 * = 71687410464642966611 49295423661101588880 , z 10 * = 3723562194545339719095199 1118238146296285748086080 , z 12 * = 3459921708110971652593 12288331277981162066880 , z 13 * = 1437915323322245022121277 1863730243827142913476800 , z 15 * = 9334610941403380115035381 10064143316666571732774720 .

5. Numerical Tests

In this section, the performance of the quasi-interpolation operator Q * defined by the masks provided by the solution above is tested. To perform this, we consider Franke’s function
f 1 x 1 , x 2 = 3 4 exp 9 x 1 2 2 4 9 x 2 2 2 4 + 3 4 exp 9 x 1 + 1 2 49 9 x 2 + 1 10 + 1 2 exp 9 x 1 7 2 4 9 x 2 3 2 4 1 5 exp 9 x 1 4 2 9 x 2 7 2
and Nielson’s function
f 2 x 1 , x 2 = x 2 2 cos 4 4 ( x 1 2 + x 2 1 )
to produce quasi-interpolants on the unit square [10,11]. The plots of f 1 and f 2 are shown in Figure 8, together with those of their quasi-interpolants obtained by diving the unit interval into 256 equal parts.
The quasi-interpolation error is estimated as
max k , = 1 , , 400 Q * f x k , y f x k , y ,
x k and y being equally spaced points in 0 , 1 . The numerical convergence order (NCO) is given by the rate
NCO : = log E h 2 E h 1 / log h 2 h 1 ,
where E h stands for the estimated error associated with the step length h.
The quasi-interpolation errors are estimated for different values of the step length h and the NCO are calculated. The results are shown in Table 1. They confirm the theoretical ones.

6. Conclusions

In this work, C 1 cubic quasi-interpolants have been defined on a Clough–Tocher refinement of a type-1 triangulation, providing directly their BB-coefficients on each of the micro-triangles of the sub-triangulation, which are linear combinations of the values taken by the approximated function at specific points in a neighborhood of each macro-triangle. Cubic polynomials are reproduced. The general problem has a 17-parametric family of solutions and a specific solution has been chosen, which minimizes an upper bound of the quasi-interpolation errors associated with the quartic monomials.
The results improve on those available for cubic quasi-interpolation over a type-1 triangulation since the quasi-interpolation operator is now exact on P 3 instead of P 2 .

Author Contributions

Conceptualization, D.B.; Investigation, H.B., A.M. and D. Barrera; Writing—original draft, D.B.; Writing—review & editing, H.B. and A.M. All authors have read and agreed to the published version of the manuscript.

Funding

Not applicable.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors wish to thank the anonymous referees for their very pertinent and useful comments which helped them to improve the original manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Masks

This appendix includes the masks provided by Proposition 2 and which do not depend on the parameters indicated. Further, the remaining ones corresponding to the parameters values z r * were performed. They have been obtained by minimizing the considered upper bound of the quasi-interpolation errors of the quartic monomials. They are very lengthy expressions, but are included to provide the reader with as much information as possible.

Appendix A.1. Masks That Do Not Depend on Parameters

Mask of u i , j 1 , 1 :
47473646953 77552946585 , 285439445629 361913750730 , 533680265081 482551667640 , 209207768203 103403928780 , 382180214323 33510532475 , 209207768203 103403928780 , 533680265081 482551667640 , 6856655665381 2895310005840 , 120096488429 160850555880 , 1333910079319 1447655002920 , 27952071335903 965103335280 , 1333910079319 1447655002920 , 120096488429 160850555880 , 144225313868 542870626095 , 2725154777111 1447655002920 , 2095907565527 723827501460 , 6955013524199 4342965008760 , 36832622942 180956875365 , 64504080325 289531000584 , 3760571723053 2171482504380 , 2552223421511 361913750730 , 5169718992073 361913750730 , 8031525079 77552946585 , 5169718992073 361913750730 , 2552223421511 361913750730 , 3760571723053 2171482504380 , 64504080325 289531000584 , 36832622942 180956875365 , 6955013524199 4342965008760 , 2095907565527 723827501460 , 2725154777111 1447655002920 , 31932271589 40212638970 , 31932271589 40212638970 , 73887390529 1737186003504 , 25733502500393 43429650087600 , 343799911081 361913750730 , 343799911081 361913750730
Mask of u i , j 1 , 1 :
211036174997 232658839755 , 285439445629 1085741252190 , 533680265081 1447655002920 , 411215804477 310211786340 , 382180214323 100531597425 , 411215804477 310211786340 , 533680265081 1447655002920 , 6856655665381 8685930017520 , 120096488429 482551667640 , 3009054929441 4342965008760 , 27952071335903 2895310005840 , 3009054929441 4342965008760 , 120096488429 482551667640 , 144225313868 1628611878285 , 2725154777111 4342965008760 , 2095907565527 2171482504380 , 6955013524199 13028895026280 , 36832622942 542870626095 , 64504080325 868593001752 , 2312916720133 6514447513140 , 2552223421511 1085741252190 , 5169718992073 1085741252190 , 8031525079 232658839755 , 5169718992073 1085741252190 , 2552223421511 1085741252190 , 2312916720133 6514447513140 , 64504080325 868593001752 , 36832622942 542870626095 , 6955013524199 13028895026280 , 2095907565527 2171482504380 , 2725154777111 4342965008760 , 31932271589 120637916910 , 31932271589 120637916910 , 73887390529 5211558010512 , 25733502500393 130288950262800 , 343799911081 1085741252190 , 343799911081 1085741252190
Mask of u i , j 2 , 1 :
319149498787 465317679510 , 285439445629 542870626095 , 533680265081 723827501460 , 364313661373 155105893170 , 764360428646 100531597425 , 209207768203 155105893170 , 533680265081 723827501460 , 6856655665381 4342965008760 , 120096488429 241275833820 , 2419651331509 2171482504380 , 27952071335903 1447655002920 , 1333910079319 2171482504380 , 120096488429 241275833820 , 288450627736 1628611878285 , 2725154777111 2171482504380 , 2095907565527 1085741252190 , 6955013524199 6514447513140 , 73665245884 542870626095 , 64504080325 434296500876 , 4122485473783 3257223756570 , 2552223421511 542870626095 , 5169718992073 542870626095 , 16063050158 232658839755 , 5169718992073 542870626095 , 2552223421511 542870626095 , 3760571723053 3257223756570 , 64504080325 434296500876 , 73665245884 542870626095 , 6955013524199 6514447513140 , 2095907565527 1085741252190 , 2725154777111 2171482504380 , 31932271589 60318958455 , 31932271589 60318958455 , 73887390529 2605779005256 , 25733502500393 65144475131400 , 343799911081 542870626095 , 343799911081 542870626095
Mask of u i , j 1 , 0 :
319149498787 465317679510 , 285439445629 542870626095 , 533680265081 723827501460 , 519419554543 155105893170 , 764360428646 100531597425 , 54101875033 155105893170 , 533680265081 723827501460 , 6856655665381 4342965008760 , 120096488429 241275833820 , 3505392583699 2171482504380 , 27952071335903 1447655002920 , 248168827129 2171482504380 , 120096488429 241275833820 , 288450627736 1628611878285 , 2725154777111 2171482504380 , 2095907565527 1085741252190 , 6955013524199 6514447513140 , 73665245884 542870626095 , 64504080325 434296500876 , 4484399224513 3257223756570 , 2552223421511 542870626095 , 5169718992073 542870626095 , 16063050158 232658839755 , 5169718992073 542870626095 , 2552223421511 542870626095 , 3398657972323 3257223756570 , 64504080325 434296500876 , 73665245884 542870626095 , 6955013524199 6514447513140 , 2095907565527 1085741252190 , 2725154777111 2171482504380 , 31932271589 60318958455 , 31932271589 60318958455 , 73887390529 2605779005256 , 25733502500393 65144475131400 , 343799911081 542870626095 , 343799911081 542870626095
Mask of u i , j 1 , 1 :
176728557928 232658839755 , 285439445629 1085741252190 , 533680265081 1447655002920 , 829631340883 310211786340 , 382180214323 100531597425 , 209207768203 310211786340 , 533680265081 1447655002920 , 6856655665381 8685930017520 , 120096488429 482551667640 , 5676875088079 4342965008760 , 27952071335903 2895310005840 , 1333910079319 4342965008760 , 120096488429 482551667640 , 144225313868 1628611878285 , 2725154777111 4342965008760 , 2095907565527 2171482504380 , 6955013524199 13028895026280 , 36832622942 542870626095 , 64504080325 868593001752 , 5208226725973 6514447513140 , 2552223421511 1085741252190 , 5169718992073 1085741252190 , 8031525079 232658839755 , 5169718992073 1085741252190 , 2552223421511 1085741252190 , 3760571723053 6514447513140 , 64504080325 868593001752 , 36832622942 542870626095 , 6955013524199 13028895026280 , 2095907565527 2171482504380 , 2725154777111 4342965008760 , 31932271589 120637916910 , 31932271589 120637916910 , 73887390529 5211558010512 , 25733502500393 130288950262800 , 343799911081 1085741252190 , 343799911081 1085741252190
Mask of u i , j 1 , 1 :
176728557928 232658839755 , 285439445629 1085741252190 , 533680265081 1447655002920 , 209207768203 310211786340 , 382180214323 100531597425 , 829631340883 310211786340 , 533680265081 1447655002920 , 6856655665381 8685930017520 , 120096488429 482551667640 , 1333910079319 4342965008760 , 27952071335903 2895310005840 , 5676875088079 4342965008760 , 120096488429 482551667640 , 144225313868 1628611878285 , 2725154777111 4342965008760 , 2095907565527 2171482504380 , 6955013524199 13028895026280 , 36832622942 542870626095 , 64504080325 868593001752 , 3760571723053 6514447513140 , 2552223421511 1085741252190 , 5169718992073 1085741252190 , 8031525079 232658839755 , 5169718992073 1085741252190 , 2552223421511 1085741252190 , 5208226725973 6514447513140 , 64504080325 868593001752 , 36832622942 542870626095 , 6955013524199 13028895026280 , 2095907565527 2171482504380 , 2725154777111 4342965008760 , 31932271589 120637916910 , 31932271589 120637916910 , 73887390529 5211558010512 , 25733502500393 130288950262800 , 343799911081 1085741252190 , 343799911081 1085741252190
Mask of u i , j 0 , 1 :
319149498787 465317679510 , 285439445629 542870626095 , 533680265081 723827501460 , 54101875033 155105893170 , 764360428646 100531597425 , 519419554543 155105893170 , 533680265081 723827501460 , 6856655665381 4342965008760 , 120096488429 241275833820 , 248168827129 2171482504380 , 27952071335903 1447655002920 , 3505392583699 2171482504380 , 120096488429 241275833820 , 288450627736 1628611878285 , 2725154777111 2171482504380 , 2095907565527 1085741252190 , 6955013524199 6514447513140 , 73665245884 542870626095 , 64504080325 434296500876 , 3398657972323 3257223756570 , 2552223421511 542870626095 , 5169718992073 542870626095 , 16063050158 232658839755 , 5169718992073 542870626095 , 2552223421511 542870626095 , 4484399224513 3257223756570 , 64504080325 434296500876 , 73665245884 542870626095 , 6955013524199 6514447513140 , 2095907565527 1085741252190 , 2725154777111 2171482504380 , 31932271589 60318958455 , 31932271589 60318958455 , 73887390529 2605779005256 , 25733502500393 65144475131400 , 343799911081 542870626095 , 343799911081 542870626095
Mask u i , j 1 , 2 :
319149498787 465317679510 , 285439445629 542870626095 , 533680265081 723827501460 , 209207768203 155105893170 , 764360428646 100531597425 , 364313661373 155105893170 , 533680265081 723827501460 , 6856655665381 4342965008760 , 120096488429 241275833820 , 1333910079319 2171482504380 , 27952071335903 1447655002920 , 2419651331509 2171482504380 , 120096488429 241275833820 , 288450627736 1628611878285 , 2725154777111 2171482504380 , 2095907565527 1085741252190 , 6955013524199 6514447513140 , 73665245884 542870626095 , 64504080325 434296500876 , 3760571723053 3257223756570 , 2552223421511 542870626095 , 5169718992073 542870626095 , 16063050158 232658839755 , 5169718992073 542870626095 , 2552223421511 542870626095 , 4122485473783 3257223756570 , 64504080325 434296500876 , 73665245884 542870626095 , 6955013524199 6514447513140 , 2095907565527 1085741252190 , 2725154777111 2171482504380 , 31932271589 60318958455 , 31932271589 60318958455 , 73887390529 2605779005256 , 25733502500393 65144475131400 , 343799911081 542870626095 , 343799911081 542870626095 .
Mask of y i , j 1 , 1 :
176522697979 827231430240 , 285439445629 6514447513140 , 1755007242871 13028895026280 , 43682365976659 52115580105120 , 3914887523587 26057790052560 , 0 , 0 , 6856655665381 52115580105120 , 23609319453817 52115580105120 , 4979513337263 52115580105120 , 8038657526531 26057790052560 , 0 , 0 , 72112656934 4885835634855 , 2725154777111 26057790052560 , 2095907565527 13028895026280 , 41401785965929 78173370157680 , 48774214262167 52115580105120 , 231734735789 325722375657 , 12969882253997 156346740315360 , 7618392504781 26057790052560 , 8209241769433 52115580105120 , 2520438176729 19543342539420 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 31932271589 723827501460 , 0 , 0 , 0 , 26064240688 180956875365 , 0
Mask of y i , j 1 , 1 :
176522697979 827231430240 , 285439445629 6514447513140 , 0 , 0 , 3914887523587 26057790052560 , 43682365976659 52115580105120 , 1755007242871 13028895026280 , 6856655665381 52115580105120 , 0 , 0 , 8038657526531 26057790052560 , 4979513337263 52115580105120 , 23609319453817 52115580105120 , 72112656934 4885835634855 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2520438176729 19543342539420 , 8209241769433 52115580105120 , 7618392504781 26057790052560 , 12969882253997 156346740315360 , 231734735789 325722375657 , 48774214262167 52115580105120 , 41401785965929 78173370157680 , 2095907565527 13028895026280 , 2725154777111 26057790052560 , 0 , 31932271589 723827501460 , 0 , 0 , 0 , 26064240688 180956875365 .
Mask of z i , j 1 , 0 :
16044311288503 10423116021024 , 285439445629 434296500876 , 19207698623 32170111176 , 7517711285213 1737186003504 , 13541457918013 1206379169100 , 105803839423 103403928780 , 533680265081 482551667640 , 6856655665381 3474372007008 , 948342242035 1158124002336 , 1604093855459 496338858144 , 2302892888971 80425277940 , 610082577859 1447655002920 , 120096488429 160850555880 , 72112656934 325722375657 , 2725154777111 1737186003504 , 2095907565527 868593001752 , 5562426555557 5211558010512 , 1095500413283 1737186003504 , 1089486754079 868593001752 , 505619067587 1302889502628 , 521386636583 144765500292 , 2085546546332 180956875365 , 364490450669 542870626095 , 5169718992073 361913750730 , 2552223421511 361913750730 , 3519295889233 2171482504380 , 64504080325 289531000584 , 36832622942 180956875365 , 6955013524199 4342965008760 , 2095907565527 723827501460 , 2725154777111 1447655002920 , 31932271589 48255166764 , 31932271589 40212638970 , 73887390529 1737186003504 , 25733502500393 43429650087600 , 521386636583 723827501460 , 343799911081 361913750730
Mask of z i , j 0 , 1 :
61848672613411 52115580105120 , 285439445629 2171482504380 , 533680265081 1447655002920 , 209207768203 310211786340 , 4369132774261 1206379169100 , 8501061371657 8685930017520 , 339213799501 206807857560 , 6856655665381 17371860035040 , 120096488429 482551667640 , 1333910079319 4342965008760 , 2700000133115 289531000584 , 28100144271473 17371860035040 , 15512464547161 5790620011680 , 72112656934 1628611878285 , 2725154777111 4342965008760 , 2095907565527 2171482504380 , 6955013524199 13028895026280 , 36832622942 542870626095 , 64504080325 868593001752 , 3760571723053 6514447513140 , 2552223421511 1085741252190 , 5169718992073 1085741252190 , 1205912703113 1628611878285 , 1086920646923 542870626095 , 2388094137299 2171482504380 , 6440703111091 6514447513140 , 1218494914729 868593001752 , 6656146000559 8685930017520 , 21722746362811 26057790052560 , 2095907565527 4342965008760 , 2725154777111 8685930017520 , 31932271589 120637916910 , 31932271589 241275833820 , 73887390529 5211558010512 , 25733502500393 130288950262800 , 343799911081 1085741252190 , 37792053085 434296500876
Mask of x i , j 1 , 0 :
61848672613411 52115580105120 , 285439445629 2171482504380 , 339213799501 206807857560 , 8501061371657 8685930017520 , 4369132774261 1206379169100 , 209207768203 310211786340 , 533680265081 1447655002920 , 6856655665381 17371860035040 , 15512464547161 5790620011680 , 28100144271473 17371860035040 , 2700000133115 289531000584 , 1333910079319 4342965008760 , 120096488429 482551667640 , 72112656934 1628611878285 , 2725154777111 8685930017520 , 2095907565527 4342965008760 , 21722746362811 26057790052560 , 6656146000559 8685930017520 , 1218494914729 868593001752 , 6440703111091 6514447513140 , 2388094137299 2171482504380 , 1086920646923 542870626095 , 1205912703113 1628611878285 , 5169718992073 1085741252190 , 2552223421511 1085741252190 , 3760571723053 6514447513140 , 64504080325 868593001752 , 36832622942 542870626095 , 6955013524199 13028895026280 , 2095907565527 2171482504380 , 2725154777111 4342965008760 , 31932271589 241275833820 , 31932271589 120637916910 , 73887390529 5211558010512 , 25733502500393 130288950262800 , 37792053085 434296500876 , 343799911081 1085741252190
Mask of x i , j 0 , 1 :
16044311288503 10423116021024 , 285439445629 434296500876 , 533680265081 482551667640 , 105803839423 103403928780 , 13541457918013 1206379169100 , 7517711285213 1737186003504 , 19207698623 32170111176 , 6856655665381 3474372007008 , 120096488429 160850555880 , 610082577859 1447655002920 , 2302892888971 80425277940 , 1604093855459 496338858144 , 948342242035 1158124002336 , 72112656934 325722375657 , 2725154777111 1447655002920 , 2095907565527 723827501460 , 6955013524199 4342965008760 , 36832622942 180956875365 , 64504080325 289531000584 , 3519295889233 2171482504380 , 2552223421511 361913750730 , 5169718992073 361913750730 , 364490450669 542870626095 , 2085546546332 180956875365 , 521386636583 144765500292 , 505619067587 1302889502628 , 1089486754079 868593001752 , 1095500413283 1737186003504 , 5562426555557 5211558010512 , 2095907565527 868593001752 , 2725154777111 1737186003504 , 31932271589 40212638970 , 31932271589 48255166764 , 73887390529 1737186003504 , 25733502500393 43429650087600 , 343799911081 361913750730 , 521386636583 723827501460 .
Masks associated with the parameter values z r
Mask of t i , j :
4531890127703 13028895026280 , 36006119259559 39086685078840 , 20242568383524532937 7042203380157369840 , 17297520671281 13028895026280 , 29593026919579 5428706260950 , 26994849992255621402765 15974830661375510686944 , 9165456190681132751 6161927957637698610 , 30904875065308 24429178174275 , 64028235288551979169 24647711830550794440 , 576334620107504500896935 223647629259257149617216 , 361472787357233 26057790052560 , 5791606797469437299171 12288331277981162066880 , 96451246858750373479 49295423661101588880 , 9488658832619183459 7783487946489724560 , 399428393604596767 3791955666238583760 , 21206215098462805471 49295423661101588880 , 888284192303734585 1556697589297944912 , 1354491661355237551055957 1863730243827142913476800 , 1387013003869 8685930017520 , 2878083358530960513494389 10064143316666571732774720 , 1681864799399 558381215412 , 4586462085623 697976519265 , 179554805254886612513 2218294064749571499600 , 567425049055209047084219 149098419506171433078144 , 726921707599278586955167 798741533068775534347200 , 1087229746071719305197127 629008957291660733298420 , 70130888658695527738129 31949661322751021373888 , 55746022850959428730643 279559536574071437021520 , 292198896309538327 972935993311215570 , 148884558838306413569 49295423661101588880 , 7135795471566067417 1895977833119291880 , 1112520265706788528800107 3354714438888857244258240 , 1767938963792804738010533 6709428877777714488516480 , 232977362971875229 34127600996147253840 , 48551848730147429474011 276487453754576146504800 , 2318866060366412313392359 838678609722214311064560 , 7657959982383155961476047 3354714438888857244258240
Mask of b i , j :
0 , 0 , 33654106472661220639 24647711830550794440 , 0 , 0 , 28931119278287059059781 79874153306877553434720 , 147713415264798351289 49295423661101588880 , 0 , 71687410464642966611 49295423661101588880 , 3723562194545339719095199 1118238146296285748086080 , 0 , 3459921708110971652593 12288331277981162066880 , 10915736212229383229 3521101690078684920 , 17837846075447753051 7783487946489724560 , 2964129356331035 27085397615989884 , 80572693526252875501 49295423661101588880 , 584083821479971933 1945871986622431140 , 1437915323322245022121277 1863730243827142913476800 , 0 , 9334610941403380115035381 10064143316666571732774720 , 0 , 0 , 6547984526167163665 88731762589982859984 , 2061565679251584881570009 745492097530857165390720 , 3132760642018231502419567 798741533068775534347200 , 1490762720001245530293439 629008957291660733298420 , 325145030004122832756977 159748306613755106869440 , 8646494711181661614169 55911907314814287404304 , 4440165076962254041 7783487946489724560 , 89518080410516343539 49295423661101588880 , 14256041226850386701 3791955666238583760 , 281846783691478699397989 3354714438888857244258240 , 911334612517867838881345 1341885775555542897703296 , 352952140065170249 6825520199229450768 , 6065655156261675300631 55297490750915229300960 , 2681065109642364400574251 838678609722214311064560 , 1821351235897392862040723 670942887777771448851648
Mask of y i , j 2 , 1 :
12271780430239 11167624308240 , 23115036621721 13028895026280 , 697752284589655474 146712570419945205 , 19233346304581 5211558010512 , 29593026919579 1809568753650 , 26994849992255621402765 5324943553791836895648 , 31613815182159137939 16431807887033862960 , 123384121964447 65144475131400 , 7928485881111597527 2053975985879232870 , 2940388026606543576781849 372746048765428582695360 , 361472787357233 8685930017520 , 5791606797469437299171 4096110425993720688960 , 89635388032606534969 32863615774067725920 , 2391950060126985955 1037798392865296608 , 833558368032964139 631992611039763960 , 2966315162024509075 6572723154813545184 , 4586462085623 232658839755 , 869086434956909083 648623995540810380 , 1447826441014520643970577 621243414609047637825600 , 444445950829 2605779005256 , 2445437288558816620140901 3354714438888857244258240 , 1681864799399 186127071804 , 328025690686445610353 1478862709833047666400 , 567425049055209047084219 49699473168723811026048 , 726921707599278586955167 266247177689591844782400 , 1087229746071719305197127 209669652430553577766140 , 70130888658695527738129 10649887107583673791296 , 55746022850959428730643 93186512191357145673840 , 2370991526403268243 2594495982163241520 , 178056402439210119869 32863615774067725920 , 4003702544556302561 631992611039763960 , 951454110398899835368811 1118238146296285748086080 , 1767938963792804738010533 2236476292592571496172160 , 8956702739347499 5687933499357875640 , 48551848730147429474011 92162484584858715501600 , 2318866060366412313392359 279559536574071437021520 , 7657959982383155961476047 1118238146296285748086080 ,
Mask of y i , j 1 , 2 :
279021003241424923 148256913266470944 , 0 , 2095907565527 13028895026280 , 2987873000594748871 2527970444159055840 , 251548442921233 260577900525600 , 391511615876220607 78999076379970495 , 0 , 0 , 2725154777111 26057790052560 , 61670773096205223361 32863615774067725920 , 11080236034699 6514447513140 , 119712715237402707269 32863615774067725920 , 0 , 35841538350081461 1625123856959393040 , 0 , 0 , 72112656934 4885835634855 , 6856655665381 52115580105120 , 285439445629 6514447513140 , 822872808792542327 5188991964326483040 , 20342292042566996155 6572723154813545184 , 123959409326402622509 32863615774067725920 , 1437666942653 52115580105120 , 41709834343289924069 16431807887033862960 , 103267105684894211989 32863615774067725920 , 33400355926961627 2594495982163241520 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 31083919823327614673 1478862709833047666400 , 31932271589 723827501460 , 0
Mask of y i , j 2 , 1 :
3512153958923412841 1037798392865296608 , 0 , 0 , 132824112520673051 252797044415905584 , 5398434624971 5790620011680 , 3368897166768107761 505594088831811168 , 2095907565527 13028895026280 , 0 , 0 , 51400849925349169201 32863615774067725920 , 2771608293079 8685930017520 , 129982638408258761429 32863615774067725920 , 2725154777111 26057790052560 , 74797826319829301 1137586699871575128 , 0 , 0 , 0 , 0 , 0 , 34028298205171069 2594495982163241520 , 78503269290786805121 32863615774067725920 , 4837764506653326713 2053975985879232870 , 5150734764713 10423116021024 , 129974845906529243239 32863615774067725920 , 18067899515277483949 4694802253438246560 , 821616924236123443 5188991964326483040 , 285439445629 6514447513140 , 6856655665381 52115580105120 , 72112656934 4885835634855 , 0 , 0 , 0 , 0 , 0 , 3045745544524018757 295772541966609533280 , 0 , 31932271589 723827501460
Mask of y i , j 1 , 2 :
22557725931173 39086685078840 , 10223953983883 26057790052560 , 14303048446047913787 8215903943516931480 , 0 , 0 , 7343052350198304428891 5324943553791836895648 , 81155974164104723453 16431807887033862960 , 47075659357 13028895026280 , 64871551638499128101 32863615774067725920 , 3723562194545339719095199 372746048765428582695360 , 0 , 2814702740319531297679 4096110425993720688960 , 7580980524594648365 1643180788703386296 , 3073350921486401347 1037798392865296608 , 215819734497942031 252797044415905584 , 109744537127156581801 32863615774067725920 , 2370363584125058801 2594495982163241520 , 1437915323322245022121277 621243414609047637825600 , 0 , 9334610941403380115035381 3354714438888857244258240 , 0 , 0 , 8919157102449659699 42253220280944219040 , 2061565679251584881570009 248497365843619055130240 , 3132760642018231502419567 266247177689591844782400 , 379450774843626130907008 52417413107638394441535 , 68314426406062357805065 10649887107583673791296 , 28616345252400386004019 46593256095678572836920 , 347571779754942689 259449598216324152 , 53480289501930992693 32863615774067725920 , 5261189680556966689 1263985222079527920 , 281846783691478699397989 1118238146296285748086080 , 4234540751973561807544133 2236476292592571496172160 , 203356487425511647 2275173399743150256 , 6065655156261675300631 18432496916971743100320 , 2681065109642364400574251 279559536574071437021520 , 1821351235897392862040723 223647629259257149617216
Mask of z i , j 1 , 1 :
55838625716687 52115580105120 , 28252946643043 4342965008760 , 35419776850673763263 2738634647838977160 , 340862589821 77552946585 , 36472270777393 1206379169100 , 22784567744197314899045 1774981184597278965216 , 41709834343289924069 5477269295677954320 , 184986982915643 86859300175200 , 16061835113666299907 1564934084479415520 , 696077982004858901394227 24849736584361905513024 , 222664500682471 2895310005840 , 4377474382328624429291 1365370141997906896320 , 103267105684894211989 10954538591355908640 , 12649034228277897263 1729663988108827680 , 95482998221203757 84265681471968528 , 32748200305393967077 10954538591355908640 , 1629969089647167523 864831994054413840 , 1550315458679682817567037 207081138203015879275200 , 64504080325 108574125219 , 4294689070651846383297973 1118238146296285748086080 , 10208893686044 542870626095 , 20678875968292 542870626095 , 31083919823327614673 492954236611015888800 , 173021210789374032949883 16566491056241270342016 , 1770022110879746120192767 88749059229863948260800 , 320297403910492795197703 17472471035879464813845 , 71449037995331751739129 3549962369194557930432 , 66283535540719222053683 31062170730452381891280 , 62692087856862133 864831994054413840 , 125189984533080661589 10954538591355908640 , 417844641336210772 26333025459990165 , 507465788526363562852763 372746048765428582695360 , 2754579679065107565823973 745492097530857165390720 , 35841538350081461 541707952319797680 , 18213339302664427175101 30720828194952905167200 , 2445005075701749729458923 93186512191357145673840 , 8248110067234692639264367 372746048765428582695360
Mask of x i , j 1 , 1 :
25735396581967 52115580105120 , 20499774026527 8685930017520 , 4837764506653326713 684658661959744290 , 147165410935 62042357268 , 4542756612353 241275833820 , 95967048423019818088417 8874905922986394826080 , 10549610284487262413 782467042239707760 , 61898203625857 17371860035040 , 78503269290786805121 10954538591355908640 , 3594876144767525747936119 124248682921809527565120 , 69404143337381 1447655002920 , 3119383890644764638467 1365370141997906896320 , 137196682189771506217 10954538591355908640 , 14677470679789039247 1729663988108827680 , 48558431048704523 84265681471968528 , 56878119221027123521 10954538591355908640 , 62064145578652691 864831994054413840 , 1508165407920643644274877 207081138203015879275200 , 322520401625 868593001752 , 6231253028279350105536421 1118238146296285748086080 , 2552223421511 217148250438 , 5169718992073 217148250438 , 3045745544524018757 98590847322203177760 , 318105460850634877653593 82832455281206351710080 , 2395882352848026640135327 88749059229863948260800 , 280444972598738032686143 13977976828703571851076 , 72239927597313486139729 3549962369194557930432 , 72606043154575098047507 31062170730452381891280 , 1629341147368958081 864831994054413840 , 20212013123489501029 2190907718271181728 , 3225445712758438091 210664203679921320 , 211473573944672714508731 372746048765428582695360 , 3346564108228489262512037 745492097530857165390720 , 74797826319829301 379195566623858376 , 2046729234925159151 6144165638990581033440 , 2533527588429480231127171 93186512191357145673840 , 8602200118145614645937359 372746048765428582695360

References

  1. Sorokina, T.; Zeilfelder, F. Optimal quasi-interpolation by quadratic C1 splines on four-directional meshes. In Approximation Theory; Chui, C.K., Neamtu, M., Schumaker, L.L., Eds.; Nashboro Press: Brentwood, TN, USA, 2005; Volume XI, pp. 423–438. [Google Scholar]
  2. Sorokina, T.; Zeilfelder, F. An explicit quasi-interpolation scheme based on C1 quartic splines on type-1 triangulations. Comput. Aided Geom. Des. 2008, 25, 1–13. [Google Scholar] [CrossRef]
  3. Nürnberger, G.; Rössl, C.; Seidel, H.-P.; Zeilfelder, F. Quasi-Interpolation by quadratic piecewise polynomials in three variables. Comput. Aided Geom. Des. 2005, 22, 221–249. [Google Scholar] [CrossRef]
  4. Sorokina, T.; Zeilfelder, F. Local Quasi-Interpolation by cubic C1 splines on type-6 tetrahedral partitions. IMA J. Numer. Anal. 2007, 27, 74–101. [Google Scholar] [CrossRef] [Green Version]
  5. Barrera, D.; Dagnino, C.; Ibáñez, M.J.; Remogna, S. Quasi-interpolation by C1 quartic splines on type-1 triangulations. J. Comput. Appl. Math. 2019, 349, 225–238. [Google Scholar] [CrossRef]
  6. Barrera, D.; Conti, C.; Dagnino, C.; Ibáñez, M.J.; Remogna, S. C1-Quartic Butterfly-spline interpolation on type-1 triangulations. In Approximation Theory XVI, Proceedings of the Conference on Mathematics & Statistics, Nashville, TN, USA, 19–22 May 2019; Fasshauer, G.E., Neamtu, M., Schumaker, L.L., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; Volume 336, Chapter 2; pp. 11–26. [Google Scholar]
  7. Barrera, D.; Dagnino, C.; Ibáñez, M.J.; Remogna, S. Point and differential C1 quasi-interpolation on three direction meshes. J. Comput. Appl. Maths. 2019, 354, 373–389. [Google Scholar] [CrossRef]
  8. Clough, R.W.; Tocher, J.L. Finite element stiffness matrices for analysis of plates in bending. In Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, OH, USA, 26–28 October 1965; Przemieniecki, J.S., Ed.; Wright-Patterson Air Force Base: Dayton, OH, USA, 1967; pp. 515–545. [Google Scholar]
  9. Lai, M.-J.; Schumaker, L.L. Spline Functions on Triangulations. Encyclopedia of Mathematics and Its Applications, 110; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
  10. Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 1982, 38, 181–200. [Google Scholar]
  11. Nielson, G.M. A first order blending method for triangles based upon cubic interpolation. Int. J. Numer. Meth. Eng. 1978, 15, 308–318. [Google Scholar] [CrossRef]
Figure 1. From left to right, type-1 and type-2 triangulations on which C 1 -continuous quasi-interpolants are constructed in [1,2]: quartic and exact on P 3 , and quadratic and exact on P 2 , respectively.
Figure 1. From left to right, type-1 and type-2 triangulations on which C 1 -continuous quasi-interpolants are constructed in [1,2]: quartic and exact on P 3 , and quadratic and exact on P 2 , respectively.
Mathematics 11 00059 g001
Figure 2. Top, from left to right, decomposition into squares induced by the vertices of Δ , type-1 triangulation. Bottom, CT-refinements of macro-triangles T i , j and B i , j .
Figure 2. Top, from left to right, decomposition into squares induced by the vertices of Δ , type-1 triangulation. Bottom, CT-refinements of macro-triangles T i , j and B i , j .
Mathematics 11 00059 g002
Figure 3. Domain points forming the subset D i , j corresponding to v i , j .
Figure 3. Domain points forming the subset D i , j corresponding to v i , j .
Mathematics 11 00059 g003
Figure 4. Domain points lying in the hexagon formed by the triangles sharing vertex v i , j . Each shows the subscripts of the vertex to which it is linked.
Figure 4. Domain points lying in the hexagon formed by the triangles sharing vertex v i , j . Each shows the subscripts of the vertex to which it is linked.
Mathematics 11 00059 g004
Figure 5. Top, the domain points associated with the three micro-triangles of the macro-triangle T i , j . They are denoted as shown in Figure 4 bottom; the indices corresponding to each micro-triangle, whose orientation is determined by the vertex ordering given by (1).
Figure 5. Top, the domain points associated with the three micro-triangles of the macro-triangle T i , j . They are denoted as shown in Figure 4 bottom; the indices corresponding to each micro-triangle, whose orientation is determined by the vertex ordering given by (1).
Mathematics 11 00059 g005
Figure 6. Schematic representation of the conditions to be imposed to achieve C 1 continuity on the macro-interval edges (top) and on the micro-edges and at barycenters (bottom). In each of the shaded parallelograms in the figure on the left, it must be fulfilled that the sum of the BB-coefficients of two opposite domain points must be equal to that of the other two. The C 1 continuity across the micro-edges of the triangle T i , j is obtained if, in each of the two green and red Δ-triangles closest to each vertex, it is satisfied that the BB-coefficient corresponding to the interior domain point is equal to one-third of the sum of those of the three vertices of the triangle. The same condition must be fulfilled for the ▽-triangles of B i , j .
Figure 6. Schematic representation of the conditions to be imposed to achieve C 1 continuity on the macro-interval edges (top) and on the micro-edges and at barycenters (bottom). In each of the shaded parallelograms in the figure on the left, it must be fulfilled that the sum of the BB-coefficients of two opposite domain points must be equal to that of the other two. The C 1 continuity across the micro-edges of the triangle T i , j is obtained if, in each of the two green and red Δ-triangles closest to each vertex, it is satisfied that the BB-coefficient corresponding to the interior domain point is equal to one-third of the sum of those of the three vertices of the triangle. The same condition must be fulfilled for the ▽-triangles of B i , j .
Mathematics 11 00059 g006
Figure 7. Mask M ( v i , j ) .
Figure 7. Mask M ( v i , j ) .
Mathematics 11 00059 g007
Figure 8. Top, from left to right, plots of the test functions. Bottom, the ones of their respective quasi-interpolants Q * f 1 and Q * f 2 with h = 1 / 256 .
Figure 8. Top, from left to right, plots of the test functions. Bottom, the ones of their respective quasi-interpolants Q * f 1 and Q * f 2 with h = 1 / 256 .
Mathematics 11 00059 g008
Table 1. Errors and NCOs for functions f 1 and f 2 with h = 1 / n , n = 20 , 40 , 80 , 160 .
Table 1. Errors and NCOs for functions f 1 and f 2 with h = 1 / n , n = 20 , 40 , 80 , 160 .
f 1 f 2
nEstimated ErrorNCOEstimated ErrorNCO
16 7.07377 × 10 1 1.47146 × 10 1
32 4.49051 × 10 2 3.97753 1.44799 × 10 2 3.34512
64 3.14830 × 10 3 3.83423 8.62813 × 10 4 4.06886
128 1.76965 × 10 4 4.15304 5.36388 × 10 5 4.00770
256 1.07615 × 10 5 4.03951 3.48823 × 10 6 3.94271
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Benharzallah, H.; Mennouni, A.; Barrera, D. C1-Cubic Quasi-Interpolation Splines over a CT Refinement of a Type-1 Triangulation. Mathematics 2023, 11, 59. https://doi.org/10.3390/math11010059

AMA Style

Benharzallah H, Mennouni A, Barrera D. C1-Cubic Quasi-Interpolation Splines over a CT Refinement of a Type-1 Triangulation. Mathematics. 2023; 11(1):59. https://doi.org/10.3390/math11010059

Chicago/Turabian Style

Benharzallah, Haithem, Abdelaziz Mennouni, and Domingo Barrera. 2023. "C1-Cubic Quasi-Interpolation Splines over a CT Refinement of a Type-1 Triangulation" Mathematics 11, no. 1: 59. https://doi.org/10.3390/math11010059

APA Style

Benharzallah, H., Mennouni, A., & Barrera, D. (2023). C1-Cubic Quasi-Interpolation Splines over a CT Refinement of a Type-1 Triangulation. Mathematics, 11(1), 59. https://doi.org/10.3390/math11010059

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop