Reconstructing a 3D Medical Image from a Few 2D Projections Using a B-Spline-Based Deformable Transformation
Abstract
:1. Introduction
2. Methods
2.1. Deformation-Based Reconstruction Method
2.2. B-Spline Interpolation
2.3. B-Spline-Based Reconstruction Method
2.4. Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nasseh, I.; Al-Rawi, W. Cone Beam Computed Tomography. Dent. Clin. North Am. 2018, 62, 361–391. [Google Scholar] [CrossRef] [PubMed]
- Ruschin, M.; Komljenovic, P.T.; Ansell, S.; Ménard, C.; Bootsma, G.; Cho, Y.B.; Chung, C.; Jaffray, D. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Létourneau, D.; Wong, J.W.; Oldham, M.; Gulam, M.; Watt, L.; Jaffray, D.A.; Siewerdsen, J.H.; Martinez, A.A. Cone-beam-CT guided radiation therapy: Technical implementation. Radiother. Oncol. 2005, 75, 279–286. [Google Scholar] [CrossRef]
- Efird, J.T.; Jindal, C.; Podder, T.K.; Kang, K.H.; Biswas, T. Cone beam computed tomography-the need for future guidance. J. Thorac. Dis. 2022, 14, 3681–3683. [Google Scholar] [CrossRef] [PubMed]
- Hioki, K.; Araki, F.; Oono, T.; Tomiyama, Y.; Nakaguchi, Y. Monte Carlo-calculated patient organ doses from kV-cone beam CT in image-guided radiation therapy. Biomed. Phys. Eng. Express 2015, 1, 025203. [Google Scholar] [CrossRef]
- Ohno, T.; Araki, F.; Onizuka, R.; Hioki, K.; Tomiyama, Y.; Yamashita, Y. New absorbed dose measurement with cylindrical water phantoms for multidetector CT. Phys. Med. Biol. 2015, 60, 4517. [Google Scholar] [CrossRef]
- Santoso, A.P.; Song, K.H.; Qin, Y.; Gardner, S.J.; Liu, C.; Chetty, I.J.; Movsas, B.; Ajlouni, M.; Wen, N. Evaluation of gantry speed on image quality and imaging dose for 4D cone-beam CT acquisition. Radiat. Oncol. 2016, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Lou, Y.; Li, R.; Song, W.Y.; Jiang, S.B. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation. Med. Phys. 2010, 37, 1757–1760. [Google Scholar] [CrossRef] [Green Version]
- Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 2008, 53, 4777–4807. [Google Scholar] [CrossRef] [Green Version]
- Shouliang, Q.; Teng, Y.; Kang, Y.; Qi, S. A separable quadratic surrogate total variation minimization algorithm for accelerating accurate CT reconstruction from few-views and limited-angle data. Med. Phys. 2018, 45, 535–548. [Google Scholar]
- Song, J.; Liu, Q.H.; Johnson, G.A.; Badea, C.T. Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT. Med. Phys. 2007, 34, 4476–4483. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Gao, Y.; Bian, Z.; Huang, J.; Chen, W.; Yu, G.; Liang, Z.; Ma, J. Sparse-view x-ray CT reconstruction via total generalized variation regularization. Phys. Med. Biol. 2014, 59, 2997. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Chen, G.-H. Extraction of tumor motion trajectories using PICCS-4DCBCT: A validation study. Med. Phys. 2011, 38, 5530–5538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.-H.; Tang, J.; Leng, S. Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 2008, 35, 660–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Xing, L.; Davidi, R.; Li, R.; Qian, J.; Lee, R. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints. Phys. Med. Biol. 2012, 57, 2287. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Ma, J.; Zeng, D.; Bian, Z.; Niu, S.; Feng, Q.; Liang, Z.; Chen, W. Iterative image reconstruction for sparse-view CT using normal-dose image induced total variation prior. PLoS ONE 2013, 8, e79709. [Google Scholar] [CrossRef] [Green Version]
- Stayman, J.W.; Dang, H.; Ding, Y.; Siewerdsen, J.H. PIRPLE: A penalized-likelihood framework for incorporation of prior images in CT reconstruction. Phys. Med. Biol. 2013, 58, 7563. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.; Wang, A.S.; Sussman, M.S.; Siewerdsen, J.H.; Stayman, J.W. dPIRPLE: A joint estimation framework for deformable registration and penalized likelihood CT image reconstruction using prior images. Phys. Med. Biol. 2014, 59, 4799. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Zhang, Y.; Yin, F.F. A limited-angle intrafraction verification (LIVE) system for radiation therapy. Med Phys. 2014, 41, 020701. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, F.F.; Pan, T.; Vergalasova, I.; Ren, L. Preliminary clinical evaluation of a 4D-CBCT estimation technique using prior information and limited-angle projections. Radiother. Oncol. 2015, 115, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yin, F.-F.; Zhang, Y.; Ren, L. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy. Phys. Med. Biol. 2017, 62, 3859. [Google Scholar] [CrossRef] [PubMed]
- Ertas, M.; Yildirim, I.; Kamasak, M.; Akan, A. Digital breast tomosynthesis image reconstruction using 2D and 3D total variation minimization. Biomed. Eng. 2013, 12, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badea, C.T.; Schreibmann, E.; Fox, T. A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating. Med. Phys. 2008, 35, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Isola, A.A.; Grass, M.; Niessen, W.J. Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction. Med. Phys. 2010, 37, 1093–1109. [Google Scholar] [CrossRef] [Green Version]
- Ehrhardt, J.; Werner, R.; Säring, D.; Frenzel, T.; Lu, W.; Low, D.; Handels, H. An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Med. Phys. 2007, 34, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Saleh, Z.; Kadbi, M.; Zakian, K.; Deasy, J.; Rimner, A.; Li, G. A super-resolution framework for the reconstruction of T2-weighted (T2w) time-resolved (TR) 4DMRI using T1w TR-4DMRI as the guidance. Med. Phys. 2020, 47, 3091–3102. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, J.; Thongphiew, D.; Godfrey, D.J.; Wu, Q.J.; Zhou, S.M.; Yin, F.F. A novel digital tomosynthesis (DTS) reconstruction method using a deformation field map. Med. Phys. 2008, 35, 3110–3115. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Chetty, I.J.; Zhang, J.; Jin, J.-Y.; Wu, Q.J.; Yan, H.; Brizel, D.M.; Lee, W.R.; Movsas, B.; Yin, F.-F. Development and clinical evaluation of a three-dimensional cone-beam computed tomography estimation method using a deformation field map. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1584–1593. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B. Directly manipulated free-form deformation image registration. IEEE Trans. Image Process. 2009, 18, 624–635. [Google Scholar] [CrossRef]
- Lu, X.; Suo, S.; Liu, H.; Zhang, S. Three-dimensional multimodal image non-rigid registration and fusion in a High Intensity Focused Ultrasound system. Comput. Aided Surg. 2012, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rohde, G.K.; Aldroubi, A.; Dawant, B.M. The adaptive bases algorithm for intensity-based non-rigid image registration. IEEE Trans. Med. Imaging 2003, 22, 1470–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Després, P.; Jia, X. A review of GPU-based medical image reconstruction. Phys. Med. 2017, 42, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Dorgham, O.M.; Laycock, S.D.; Fisher, M.H. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration. IEEE Trans. Biomed. Eng. 2012, 59, 2594–2603. [Google Scholar] [CrossRef]
- de Molina, C.; Serrano, E.; Garcia-Blas, J.; Carretero, J.; Desco, M.; Abella, M. GPU-accelerated iterative reconstruction for limited-data tomography in CBCT systems. BMC Bioinform. 2018, 15, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Jia, X.; Dong, B.; Lou, Y.; Jiang, S.B. Low-dose 4DCT reconstruction via temporal nonlocal means. Med. Phys. 2011, 38, 1359–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satpute, N.; Naseem, R.; Pelanis, E.; Gómez-Luna, J.; Cheikh, F.A.; Elle, O.J.; Olivares, J. GPU acceleration of liver enhancement for tumor segmentation. Comput. Methods Programs Biomed. 2020, 184, 105285. [Google Scholar] [CrossRef]
- Haghighi, B.; DEllingwood, N.; Yin, Y.; Hoffman, E.A.; Lin, C.L. A GPU-based symmetric non-rigid image registration method in human lung. Med. Biol. Eng. Comput. 2018, 56, 355–371. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.; Hall, T.J.; Jiang, J. A GPU-Accelerated 3-D Coupled Subsample Estimation Algorithm for Volumetric Breast Strain Elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 694–705. [Google Scholar] [CrossRef] [Green Version]
- Lebert, J.; Ravi, N.; Kensah, G.; Christoph, J. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking. Front. Cardiovasc. Med. 2022, 9, 787627. [Google Scholar] [CrossRef]
Scan Angle | VPR = 60 | VPR = 30 | VPR = 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
NCC | MI | MAPE | NCC | MI | MAPE | NCC | MI | MAPE | |
30° | 0.62 | 0.72 | 0.31 | 0.83 | 1.21 | 0.13 | 0.88 | 1.31 | 0.11 |
60° | 0.76 | 0.99 | 0.20 | 0.89 | 1.25 | 0.19 | 0.93 | 1.33 | 0.06 |
90° | 0.85 | 1.08 | 0.15 | 0.94 | 1.29 | 0.08 | 0.97 | 1.37 | 0.05 |
Scan Angle | VPR = 60 | VPR = 30 | VPR = 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
NCC | MI | MAPE | NCC | MI | MAPE | NCC | MI | MAPE | |
30° | 0.80 | 0.91 | 0.17 | 0.88 | 1.31 | 0.09 | 0.90 | 1.33 | 0.07 |
60° | 0.88 | 1.22 | 0.12 | 0.94 | 1.51 | 0.07 | 0.96 | 1.55 | 0.04 |
90° | 0.90 | 1.28 | 0.10 | 0.98 | 1.58 | 0.05 | 0.99 | 1.65 | 0.02 |
Tasks | Reconstruction with 30° Scan Angle | Reconstruction with 60° Scan Angle | ||||
---|---|---|---|---|---|---|
Iterations | CPU | GPU | CPU | GPU | ||
Intel Xeon 2609 | Nvidia 1080 | Nvidia 2080 | Intel Xeon 2609 | Nvidia 1080 | Nvidia 2080 | |
100 | 11,000s | 100s | 75s | 13,400s | 120s | 100s |
200 | 19,000s | 230s | 200s | 25,500s | 250s | 220s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Dai, J. Reconstructing a 3D Medical Image from a Few 2D Projections Using a B-Spline-Based Deformable Transformation. Mathematics 2023, 11, 69. https://doi.org/10.3390/math11010069
Yan H, Dai J. Reconstructing a 3D Medical Image from a Few 2D Projections Using a B-Spline-Based Deformable Transformation. Mathematics. 2023; 11(1):69. https://doi.org/10.3390/math11010069
Chicago/Turabian StyleYan, Hui, and Jianrong Dai. 2023. "Reconstructing a 3D Medical Image from a Few 2D Projections Using a B-Spline-Based Deformable Transformation" Mathematics 11, no. 1: 69. https://doi.org/10.3390/math11010069
APA StyleYan, H., & Dai, J. (2023). Reconstructing a 3D Medical Image from a Few 2D Projections Using a B-Spline-Based Deformable Transformation. Mathematics, 11(1), 69. https://doi.org/10.3390/math11010069