Achieving a Secure and Traceable High-Definition Multimedia Data Trading Scheme Based on Blockchain
Abstract
:1. Introduction
2. Preliminaries
2.1. Oblivious Transfer
2.2. Zero-Watermark
2.3. Secret Sharing
2.4. Short Group Signature
2.5. Blockchain and Smart Contract
- Public blockchain. Allowing everyone to access the network and transact, any miner can implement the consensus protocol, which has been replaced by the equity consensus protocol of the public blockchain [33].
- Private blockchain. Miners’ access is severely restricted only through a blockchain network that can be joined with the permission of the administrator, and this type of blockchain is suitable for internal organizational use [34].
- Consortium blockchain. Some organizations form coalitions to build blockchain networks, which are considered weakly decentralized because they contain the authority of an administrator [35].
3. Problem Statement
3.1. System Model
3.2. Research Problem
4. STTS: Achieving a Secure and Traceable Vector Graph Trading Scheme Based on Blockchain
4.1. High-Definition Multimedia Data Copyright Protection Scheme
4.2. Access Control Mechanism Based on Group Signature and Secret Sharing Scheme
- Initialization.
- A secret sharing scheme for two-way authentication.
- Joining in group.
- Transaction on-chain
Algorithm 1 Transaction on-chain |
Input: System parameter: |
Output: The result returned by the smart contract |
Select |
Compute: |
and ; |
and ; |
Verify: |
; |
return : or ; |
4.3. Piracy Tracking
5. Security Analysis
6. Performance Analysis
6.1. Comparison
6.2. Performance Evaluation
7. Discussion and Limitations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Z.; Chen, L.; Zhang, X.; Zhang, S. Robust Image Hashing with Tensor Decomposition. IEEE Trans. Knowl. Data Eng. 2019, 31, 549–560. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, X.; Li, X.; Zhang, S. Robust image hashing with ring partition and invariant vector distance. IEEE Trans. Inf. Forensics Secur. 2016, 11, 200–214. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Lin, X. A Fair and Privacy-Preserving Image Trading System Based on Blockchain and Group Signature. Secur. Commun. Netw. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Lyu, F.; Cheng, N.; Zhu, H.; Zhou, H.; Xu, W.; Li, M.; Shen, X.S. Intelligent context-aware communication paradigm design for IoVs based on data analytics. IEEE Netw. 2018, 32, 74–82. [Google Scholar] [CrossRef]
- Liang, J.; Qin, Z.; Xiao, S.; Ou, L.; Lin, X. Efficient and secure decision tree classification for cloud-assisted online diagnosis services. IEEE Trans. Dependable Secure Comput. 2019, 18, 1632–1644. [Google Scholar] [CrossRef]
- Dutta, P.; Choi, T.M.; Somani, S.; Butala, R. Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transp. Res. Part e Logist. Transp. Rev. 2020, 142, 102067. [Google Scholar] [CrossRef] [PubMed]
- Mihardjo, L.; Sasmoko, S.; Alamsjah, F.; Elidjen, E. The influence of digital customer experience and electronic word of mouth on brand image and supply chain sustainable performance. Uncertain Supply Chain. Manag. 2019, 7, 691–702. [Google Scholar] [CrossRef]
- Cao, L.J.; Men, C.G.; Gao, Y. A recursive embedding algorithm towards lossless 2D vector map watermarking. Digit. Signal Process. 2013, 23, 912–918. [Google Scholar] [CrossRef]
- Zhao, S.; O’Mahony, D. Bmcprotector: A blockchain and smart contract based application for music copyright protection. In Proceedings of the 2018 International Conference on Blockchain Technology and Application, Xi’an, China, 10–12 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Xiao, L.; Huang, W.; Xie, Y.; Xiao, W.; Li, K.C. A blockchain-based traceable IP copyright protection algorithm. IEEE Access 2020, 8, 49532–49542. [Google Scholar] [CrossRef]
- Meng, Z.; Morizumi, T.; Miyata, S.; Kinoshita, H. Design scheme of copyright management system based on digital watermarking and blockchain. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 359–364. [Google Scholar] [CrossRef]
- Savelyev, A. Copyright in the blockchain era: Promises and challenges. Comput. Law Secur. Rev. 2018, 34, 550–561. [Google Scholar] [CrossRef]
- Ren, N.; Zhao, Y.; Zhu, C.; Zhou, Q.; Xu, D. Copyright protection based on zero watermarking and blockchain for vector maps. ISPRS Int. J. Geo-Inf. 2021, 10, 294. [Google Scholar] [CrossRef]
- Wang, X.; Shao, C.; Xu, X.; Niu, X. Reversible data-hiding scheme for 2-d vector maps based on difference expansion. IEEE Trans. Inf. Sec. 2007, 2, 311–320. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Yao, A.; Wu, J. Lossless Digital Watermarking Technology for Vector Maps. Acta Electron. Sin. 2010, 38, 2786–2790. [Google Scholar] [CrossRef]
- Zhao, H.; Du, S.; Zhang, D. Zero-Watermark Scheme for 2D Vector Drawings Based on Mapping. In Proceedings of the 2011 IEEE 12th International Conference on Computer-Aided Industrial Design & Conceptual Design, Vols 1 and 2: New Engines for Industrial Design: Intelligence-Interaction-Services, New York, NY, USA, 27–29 November 2011; pp. 366–370. [Google Scholar] [CrossRef]
- Huang, C.; Liu, D.; Ni, J.; Lu, R.; Shen, X. Achieving Accountable and Efficient Data Sharing in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2020, 17, 1416–1427. [Google Scholar] [CrossRef]
- Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart contract development: Challenges and opportunities. IEEE Trans. Softw. Eng. 2019, 47, 2084–2106. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, J. Deep Perceptual Hash Based on Hash Center for Image Copyright Protection. IEEE Access 2022, 10, 120551–120562. [Google Scholar] [CrossRef]
- Holland, M.; Nigischer, C.; Stjepandić, J. Copyright protection in additive manufacturing with blockchain approach. In Transdisciplinary Engineering: A Paradigm Shift; IOS Press: Amsterdam, The Netherlands, 2017; pp. 914–921. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Wang, J. Blockchain-based multiple groups data sharing with anonymity and traceability. Sci. China Inf. Sci. 2020, 63, 1–13. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, M.; Gao, H.; Wang, Z. Blockchain for digital rights management. Future Gener. Comput. Syst. 2018, 89, 746–764. [Google Scholar] [CrossRef]
- Wang, B.; Jiawei, S.; Wang, W.; Zhao, P. A blockchain-based system for secure image protection using zero-watermark. In Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, 10–13 December 2020; pp. 62–70. [Google Scholar] [CrossRef]
- Mangipudi, E.V.; Rao, K.; Clark, J.; Kate, A. Towards automatically penalizing multimedia breaches. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS & PW), Stockholm, Sweden, 17–19 June 2019; pp. 340–346. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Y.; Liu, J.; Li, Z.; Xian, M.; Wang, H.; Mao, F.; Chen, Y. A Blockchain-Based and SGX-Enabled Access Control Framework for IoT. Electronics 2022, 11, 2710. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, Z.; Jin, C.; Zhou, A. High-performance smart contracts concurrent execution for permissioned blockchain using SGX. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greecw, 19–22 April 2021; pp. 1907–1912. [Google Scholar] [CrossRef]
- Rabin, M.O. Transaction protection by beacons. J. Comput. Syst. Sci. 1983, 27, 256–267. [Google Scholar] [CrossRef]
- Fang, W.S.; Wu, L.L.; Zhang, R. A watermark preprocessing algorithm based on arnold transformation and logistic chaotic map. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2012; Volume 341, pp. 720–724. [Google Scholar] [CrossRef]
- Yang, C.C.; Chang, T.Y.; Hwang, M.S. A (t, n) multi-secret sharing scheme. Appl. Math. Comput. 2004, 151, 483–490. [Google Scholar] [CrossRef]
- Boneh, D.; Boyen, X.; Shacham, H. Short group signatures. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2004; pp. 41–55. [Google Scholar] [CrossRef]
- Ateniese, G.; Camenisch, J.; Joye, M.; Tsudik, G. A practical and provably secure coalition-resistant group signature scheme. In Proceedings of the Annual International Cryptology Conference, Kyoto, Japan, 3–7 December 2000; Springer: Kyoto, Japan, 2000; pp. 255–270. [Google Scholar] [CrossRef]
- Nakamoto, S. A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 10 April 2021).
- Zheng, Z.B.; Xie, S.A.; Dai, H.N.; Chen, X.P.; Wang, H.M. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017; pp. 557–564. [Google Scholar] [CrossRef]
- Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts (SoK). Lect. Notes Comput. Sci. 2017, 10204, 164–186. [Google Scholar] [CrossRef]
- Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 2019, 126, 45–58. [Google Scholar] [CrossRef]
- Yang, J.; Hu, K.; Wang, X.; Wang, H.; Liu, Q.; Mao, Y. An efficient and robust zero watermarking algorithm. Multimed. Tools Appl. 2022, 81, 20127–20145. [Google Scholar] [CrossRef]
- Górski, T. Reconfigurable Smart Contracts for Renewable Energy Exchange with Re-Use of Verification Rules. Appl. Sci. 2022, 12, 5339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zeng, Z.; Peng, J.; Yu, F. Achieving a Secure and Traceable High-Definition Multimedia Data Trading Scheme Based on Blockchain. Mathematics 2023, 11, 2224. https://doi.org/10.3390/math11102224
Zhao S, Zeng Z, Peng J, Yu F. Achieving a Secure and Traceable High-Definition Multimedia Data Trading Scheme Based on Blockchain. Mathematics. 2023; 11(10):2224. https://doi.org/10.3390/math11102224
Chicago/Turabian StyleZhao, Shuguang, Zhihua Zeng, Jiahui Peng, and Feng Yu. 2023. "Achieving a Secure and Traceable High-Definition Multimedia Data Trading Scheme Based on Blockchain" Mathematics 11, no. 10: 2224. https://doi.org/10.3390/math11102224
APA StyleZhao, S., Zeng, Z., Peng, J., & Yu, F. (2023). Achieving a Secure and Traceable High-Definition Multimedia Data Trading Scheme Based on Blockchain. Mathematics, 11(10), 2224. https://doi.org/10.3390/math11102224