A Perturbed Cauchy Viscoelastic Problem in an Exterior Domain
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (P)
- , , ;
- (P)
- ;
- (P)
- .
2. Preliminaries
2.1. A Priori Estimate
2.2. Construction of a Family of Functions Belonging to
2.3. Estimates of
3. Main Results
4. Conclusions
- (i)
- (ii)
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ogawa, T.; Takeda, H. Non-existence of weak solutions to nonlinear damped wave equations in exterior domains. Nonlinear Anal. 2009, 70, 3696–3701. [Google Scholar] [CrossRef]
- Kaplan, S. On the growth of solutions of quasi-linear parabolic equations. Commun. Pure Appl. Math. 1963, 16, 305–330. [Google Scholar] [CrossRef]
- Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α. J. Sci. Univ. Tokyo Sect. I 1996, 13, 109–124. [Google Scholar]
- Fino, A.Z.; Ibrahim, H.; Wehbe, A. A blow-up result for a nonlinear damped wave equation in exterior domain: The critical case. Comput. Math. Appl. 2017, 73, 2415–2420. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. New blow-up results for nonlinear boundary value problems in exterior domains. Nonlinear Anal. 2019, 178, 348–365. [Google Scholar] [CrossRef]
- Kirane, M.; Qafsaoui, M. Fujita’s exponent for a semilinear wave equation with linear damping. Adv. Nonlinear Stud. 2002, 2, 41–49. [Google Scholar] [CrossRef]
- Todorova, G.; Yordanov, B. Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 2001, 174, 464–489. [Google Scholar] [CrossRef]
- Zhang, Q.S. A blow-up result for a nonlinear wave equation with damping: The critical case. C. R. Acad. Sci. Paris Ser. I 2001, 333, 109–114. [Google Scholar] [CrossRef]
- Haraux, A.; Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 1988, 150, 191–206. [Google Scholar] [CrossRef]
- Kafini, M.; Messaoudi, S.A. A blow up result for a viscoelastic system in RN. Electron. J. Differ. Equ. 2006, 2006, 1–7. [Google Scholar]
- Kafini, M.; Messaoudi, S.A. A blow up result in a Cauchy viscoelastic problem. Appl. Math. Lett. 2008, 21, 549–553. [Google Scholar] [CrossRef]
- Messaoudi, S.A. Blow up and global existence in nonlinear viscoelastic wave equations. Math. Nachrichten 2003, 260, 58–66. [Google Scholar] [CrossRef]
- Abdellaoui, B.; Miri, S.E.; Peral, I.; Touaoula, T.M. Some remarks on quasilinear parabolic problems with singular potential and a reaction term. Nonlinear Differ. Equ. Appl. 2014, 21, 453–490. [Google Scholar] [CrossRef]
- Abdellaoui, B.; Peral, I.; Primo, A. Influence of the Hardy potential in a semi-linear heat equation. Proc. R. Soc. Edinburgh. Sect. A 2009, 139, 897–926. [Google Scholar] [CrossRef]
- Abdellaoui, B.; Peral, I.; Primo, A. Strong regularizing effect of a gradient term in the heat equation with the Hardy potential. J. Funct. Anal. 2010, 258, 1247–1272. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Vetro, C. On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain. Adv. Nonlinear Anal. 2021, 10, 1267–1283. [Google Scholar] [CrossRef]
- Mills, N.; Jenkins, M.; Kukureka, S. Plastics: Microstructure and Engineering Applications, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Cavalcanti, M.M.; Domingos Cavalcanti, V.N.; Martinez, P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal. 2008, 68, 177–193. [Google Scholar] [CrossRef]
- Wu, S.-T. General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms. J. Math. Anal. Appl. 2013, 406, 34–48. [Google Scholar] [CrossRef]
- Alonso, I.P.; de Diego, F.S. Elliptic and Parabolic Equations Involving the Hardy–Leray Potential; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2021. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Mill, J.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Hurtado, E.J.; Salvatierra, A.P. A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group. Rend. Circ. Mat. Palermo II. Ser. 2023. [Google Scholar] [CrossRef]
- Jleli, M. On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group. Demonstr. Math. 2023, 56, 20220193. [Google Scholar] [CrossRef]
- Nashine, H.K.; Ibrahim, R.W.; Agarwal, R.P.; Can, N.H. Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces. Adv. Differ. Equ. 2020, 2020, 697. [Google Scholar] [CrossRef]
- Villagran, O.P.V.; Nonato, C.A.; Raposo, C.A.; Ramos, A.J.A. Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type. Rend. Circ. Mat. Palermo II. Ser. 2023, 72, 803–831. [Google Scholar] [CrossRef]
- Han, X.; Wang, M. General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 2009, 32, 346–358. [Google Scholar] [CrossRef]
- Thanh Binh, T.; Huu Can, N.; Quoc Nam, D.H.; Ngoc Thach, T. Regularization of a two-dimensional strongly damped wave equation with statistical discrete data. Math. Methods Appl. Sci. 2020, 43, 4317–4335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samet, B.; Vetro, C. A Perturbed Cauchy Viscoelastic Problem in an Exterior Domain. Mathematics 2023, 11, 2283. https://doi.org/10.3390/math11102283
Samet B, Vetro C. A Perturbed Cauchy Viscoelastic Problem in an Exterior Domain. Mathematics. 2023; 11(10):2283. https://doi.org/10.3390/math11102283
Chicago/Turabian StyleSamet, Bessem, and Calogero Vetro. 2023. "A Perturbed Cauchy Viscoelastic Problem in an Exterior Domain" Mathematics 11, no. 10: 2283. https://doi.org/10.3390/math11102283
APA StyleSamet, B., & Vetro, C. (2023). A Perturbed Cauchy Viscoelastic Problem in an Exterior Domain. Mathematics, 11(10), 2283. https://doi.org/10.3390/math11102283