Kuramoto Model with Delay: The Role of the Frequency Distribution
Abstract
:1. Introduction
2. Model
3. Reduction of the Collective Dynamics
4. Studying the Role of the Coupling Delay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pikovsky, A.; Kurths, J.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2003; Volume 12. [Google Scholar]
- Strogatz, S.H. Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life; Hachette: London, UK, 2012. [Google Scholar]
- Winfree, A.T. The Geometry of Biological Time; Springer Science & Business Media: Berlin, Germany, 2013; Volume 12. [Google Scholar]
- Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, 23–29 January 1975; Springer: Berlin/Heidelberg, Germany, 1975; pp. 420–422. [Google Scholar]
- Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence; Springer: Berlin, Germany; New York, NY, USA, 1984; Volume 19, p. 156. [Google Scholar]
- Kuramoto, Y.; Nishikawa, I. Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys. 1987, 49, 569–605. [Google Scholar] [CrossRef]
- Wiesenfeld, K.; Colet, P.; Strogatz, S.H. Frequency locking in Josephson arrays: Connection with the Kuramoto model. Phys. Rev. E 1998, 57, 1563. [Google Scholar] [CrossRef]
- Cumin, D.; Unsworth, C. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Phys. D Nonlinear Phenom. 2007, 226, 181–196. [Google Scholar] [CrossRef]
- Breakspear, M.; Heitmann, S.; Daffertshofer, A. Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 2010, 4, 190. [Google Scholar] [CrossRef] [PubMed]
- Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Peron, T.K.D.M.; Ji, P.; Kurths, J. The Kuramoto model in complex networks. Phys. Rep. 2016, 610, 1–98. [Google Scholar] [CrossRef]
- Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Erneux, T. Applied Delay Differential Equations; Surveys and Tutorials in the Applied Mathematical Sciences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 3, p. 204. [Google Scholar]
- Kashchenko, S.; Maiorov, V.V. Models of Wave Memory; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Schuster, H.G.; Wagner, P. Mutual Entrainment of Two Limit Cycle Oscillators with Time Delayed Coupling. Prog. Theor. Phys. 1989, 81, 939–945. [Google Scholar] [CrossRef]
- Kashchenko, A.A. Multistability in a system of two coupled oscillators with delayed feedback. J. Differ. Eqs. 2019, 266, 562–579. [Google Scholar] [CrossRef]
- Yeung, M.K.S.; Strogatz, S.H. Time Delay in the Kuramoto Model of Coupled Oscillators. Phys. Rev. Lett. 1999, 82, 648–651. [Google Scholar] [CrossRef]
- Choi, M.Y.; Kim, H.J.; Kim, D.; Hong, H. Synchronization in a system of globally coupled oscillators with time delay. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 61, 371–381. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tominaga, F.; Munakata, T. Clustering behavior of time-delayed nearest-neighbor coupled oscillators. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1994, 49, 4849–4856. [Google Scholar] [CrossRef]
- Zanette, D.H. Propagating structures in globally coupled systems with time delays. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 3167–3172. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.O.; Ko, T.W.; Moon, H.T. Time-delayed spatial patterns in a two-dimensional array of coupled oscillators. Phys. Rev. Lett. 2002, 89, 154104. [Google Scholar] [CrossRef] [PubMed]
- Petkoski, S.; Spiegler, A.; Proix, T.; Aram, P.; Temprado, J.J.; Jirsa, V.K. Heterogeneity of time delays determines synchronization of coupled oscillators. Phys. Rev. E 2016, 94, 12209. [Google Scholar] [CrossRef] [PubMed]
- D’Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I. Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos 2008, 18, 37116. [Google Scholar] [CrossRef] [PubMed]
- Laing, C.R. Travelling waves in arrays of delay-coupled phase oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 94802. [Google Scholar] [CrossRef]
- Peron, T.K.D.; Rodrigues, F.A. Explosive synchronization enhanced by time-delayed coupling. Phys. Rev. E 2012, 86, 16102. [Google Scholar] [CrossRef]
- Shinomoto, S.; Kuramoto, Y. Phase Transitions in Active Rotator Systems. Prog. Theor. Phys. 1986, 75, 1105. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Shinomoto, S.; Kuramoto, Y. Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling. Prog. Theor. Phys. 1988, 79, 600–607. [Google Scholar] [CrossRef]
- Arenas, A.; Vicente, C.J.P. Exact long-time behavior of a network of phase oscillators under random fields. Phys. Rev. E 1994, 50, 949. [Google Scholar] [CrossRef]
- Antonsen, T.M., Jr.; Faghih, R.T.; Girvan, M.; Ott, E.; Platig, J. External periodic driving of large systems of globally coupled phase oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 37112. [Google Scholar] [CrossRef] [PubMed]
- Lafuerza, L.F.; Colet, P.; Toral, R. Nonuniversal results induced by diversity distribution in coupled excitable systems. Phys. Rev. Lett. 2010, 105, 084101. [Google Scholar] [CrossRef] [PubMed]
- Klinshov, V.; Franovic, I.; Franović, I. Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators. Phys. Rev. E 2019, 100, 062211. [Google Scholar] [CrossRef] [PubMed]
- Petkoski, S.; Stefanovska, A. Kuramoto model with time-varying parameters. Phys. Rev. E 2012, 86, 46212. [Google Scholar] [CrossRef]
- Khatiwada, D.R. Numerical Solution of Finite Kuramoto Model with Time-Dependent Coupling Strength: Addressing Synchronization Events of Nature. Mathematics 2022, 10, 3633. [Google Scholar] [CrossRef]
- Timms, L.; English, L.Q. Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. Phys. Rev. E 2014, 89, 32906. [Google Scholar] [CrossRef]
- Ha, S.Y.; Noh, S.E.; Park, J. Synchronization of Kuramoto oscillators with adaptive couplings. SIAM J. Appl. Dyn. Syst. 2016, 15, 162–194. [Google Scholar] [CrossRef]
- Kasatkin, D.V.; Nekorkin, V.I. Dynamics of the Phase Oscillators with Plastic Couplings. Radiophys. Quantum Electron. 2016, 58, 877–891. [Google Scholar] [CrossRef]
- Kasatkin, D.V.; Yanchuk, S.; Schöll, E.; Nekorkin, V.I. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings. Phys. Rev. E 2017, 96, 062211. [Google Scholar] [CrossRef]
- Feketa, P.; Schaum, A.; Meurer, T. Stability of cluster formations in adaptive Kuramoto networks. IFAC-Pap. 2021, 54, 14–19. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, T.; Ding, S.; Bao, H.; Li, Z.; Chen, B. Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction. Cogn. Neurodyn. 2022, 1–12. [Google Scholar] [CrossRef]
- Zaks, M.A.; Neiman, A.B.; Feistel, S.; Schimansky-Geier, L. Noise-controlled oscillations and their bifurcations in coupled phase oscillators. Phys. Rev. E 2003, 68, 66206. [Google Scholar] [CrossRef]
- Komarov, M.; Pikovsky, A. The Kuramoto model of coupled oscillators with a bi-harmonic coupling function. Phys. D Nonlinear Phenom. 2014, 289, 18–31. [Google Scholar] [CrossRef]
- O’Keeffe, K.P.; Strogatz, S.H. Dynamics of a population of oscillatory and excitable elements. Phys. Rev. E 2016, 93, 62203. [Google Scholar] [CrossRef] [PubMed]
- Canavier, C.C.; Tikidji-Hamburyan, R.A. Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling. Phys. Rev. E 2017, 95, 032215. [Google Scholar] [CrossRef]
- Klinshov, V.; Lücken, L.; Yanchuk, S. Desynchronization by phase slip patterns in networks of pulse-coupled oscillators with delays: Desynchronization by phase slip patterns. Eur. Phys. J. Spec. Top. 2018, 227, 1117–1128. [Google Scholar] [CrossRef]
- Fiori, S. A control-theoretic approach to the synchronization of second-order continuous-time dynamical systems on real connected Riemannian manifolds. SIAM J. Control Optim. 2020, 58, 787–813. [Google Scholar] [CrossRef]
- Markdahl, J.; Thunberg, J.; Goncalves, J. High-dimensional Kuramoto models on Stiefel manifolds synchronize complex networks almost globally. Automatica 2020, 113, 108736. [Google Scholar] [CrossRef]
- Cafaro, A.D.; Fiori, S. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discret. Contin. Dyn.-Syst.-Ser. B 2022, 27, 3947–3969. [Google Scholar] [CrossRef]
- Ott, E.; Antonsen, T.M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 37113. [Google Scholar] [CrossRef]
- Ott, E.; Antonsen, T.M. Long time evolution of phase oscillator systems. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 23117. [Google Scholar] [CrossRef] [PubMed]
- Klinshov, V.; Kirillov, S.; Nekorkin, V. Reduction of the collective dynamics of neural populations with realistic forms of heterogeneity. Phys. Rev. E 2021, 103, L040302. [Google Scholar] [CrossRef]
- Pyragas, V.; Pyragas, K. Mean-field equations for neural populations with q -Gaussian heterogeneities. Phys. Rev. E 2022, 105, 044402. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, Y. Proceedings of the International symposium on Mathematical Problems in Theoretical Physics. Lect. Notes Phys. 1975, 30, 420–422. [Google Scholar]
- Yanchuk, S.; Perlikowski, P. Delay and periodicity. Phys. Rev. E 2009, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer: New York, NY, USA, 2004. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 42. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinshov, V.V.; Zlobin, A.A. Kuramoto Model with Delay: The Role of the Frequency Distribution. Mathematics 2023, 11, 2325. https://doi.org/10.3390/math11102325
Klinshov VV, Zlobin AA. Kuramoto Model with Delay: The Role of the Frequency Distribution. Mathematics. 2023; 11(10):2325. https://doi.org/10.3390/math11102325
Chicago/Turabian StyleKlinshov, Vladimir V., and Alexander A. Zlobin. 2023. "Kuramoto Model with Delay: The Role of the Frequency Distribution" Mathematics 11, no. 10: 2325. https://doi.org/10.3390/math11102325
APA StyleKlinshov, V. V., & Zlobin, A. A. (2023). Kuramoto Model with Delay: The Role of the Frequency Distribution. Mathematics, 11(10), 2325. https://doi.org/10.3390/math11102325