CTOA: Toward a Chaotic-Based Tumbleweed Optimization Algorithm
Abstract
:1. Introduction
- Currently, no studies focus on chaotic-based TOA algorithms. Previous studies have shown that by combining chaotic maps with metaheuristic algorithms, various optimization problems have been improved. Thus, to the best of our knowledge, we propose a chaotic-based tumbleweed optimization algorithm (named CTOA).
- In order to obtain the best performance of CTOA, we verify 12 chaotic maps. In our experiments, CEC2013, Friedman ranking test, and Wilcoxon test are adopted. Meanwhile, a real problem–power generation prediction is involved for evaluation.
- In this study, we combine chaotic maps with the TOA algorithm for the first time to propose a chaotic-based tumbleweed optimization algorithm (CTOA).
- We select 12 different chaotic maps and 28 popular benchmark functions to evaluate the performance of the proposed CTOA algorithm. The experimental results demonstrate that the performance and convergence of CTOA are greatly enhanced. We conclude that the best CTOA algorithm is CTOA9 (circle map + TOA).
- Finally, we compare CTOA9 with famous state-of-art optimization algorithms, including GA [3], PSO [2], ACO [7], and SFLA [8]. The results demonstrate that CTOA9 is not only the best in the Friedman ranking test and Wilcoxon test, but it also has the minimum error when applied to power generation prediction problems.
2. Related Work
3. Proposed Chaotic-Based Tumbleweed Optimization Algorithm
3.1. Tumbleweed Optimization Algorithm (TOA)
3.1.1. Individual Growth-Local Search
3.1.2. Individual Reproduction—Global Search
3.2. Chaotic-Based Tumbleweed Optimization Algorithm (CTOA)
Algorithm 1: Pseudo-code of the CTOA |
4. Experimental Result
4.1. Experimental Environment and Benchmark Function
4.2. Experimental Result on Numerical Statistics
4.3. Experimental Results on Convergence
4.4. Comparison with State-of-the-Art Algorithms
5. Real Problem: Power Generation Prediction
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PSO | particle swarm optimization |
GA | genetic algorithm |
WOA | whale optimization algorithm |
GWO | grey wolf optimizer |
SSA | salp swarm algorithm |
TOA | tumbleweed optimization algorithm |
CTOA | chaotic-based tumbleweed optimization algorithm |
CMOV | chaotic multi-variate optimization |
CPSO | chaotic particle swarm optimization |
FCFA | Gauss map-based chaotic firefly algorithm |
FSS | fish school search |
CWOA | chaotic whale optimization algorithm |
GSK | gaining sharing knowledge |
CAOA | chaotic arithmetic optimization algorithm |
HGS | hunger games search |
RBFNN | radial basis function neural network |
SGO | social group optimization |
ICMIC | iterative chaotic map with infinite collapse |
standard |
References
- Zhang, F.; Wu, T.Y.; Wang, Y.; Xiong, R.; Ding, G.; Mei, P.; Liu, L. Application of quantum genetic optimization of LVQ neural network in smart city traffic network prediction. IEEE Access 2020, 8, 104555–104564. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic Algorithm. In Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 43–55. [Google Scholar] [CrossRef]
- Nasiri, J.; Khiyabani, F.M. A whale optimization algorithm (WOA) approach for clustering. Cogent Math. Stat. 2018, 5, 1483565. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar-Solanki, V.; Kumar Choudhary, S.; Selamat, A.; González-Crespo, R. Comparative Study on Ant Colony Optimization (ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT); ACM: New York, NY, USA, 2020. [Google Scholar]
- Eusuff, M.; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim. 2006, 38, 129–154. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, J.; Guo, X.; Tan, L. A self-Adaptive CNN with PSO for bearing fault diagnosis. Syst. Sci. Control Eng. 2021, 9, 11–22. [Google Scholar] [CrossRef]
- Malviya, S.; Kumar, P.; Namasudra, S.; Tiwary, U.S. Experience Replay-Based Deep Reinforcement Learning for Dialogue Management Optimisation; ACM: New York, NY, USA, 2022. [Google Scholar]
- Houssein, E.H.; Saad, M.R.; Hussain, K.; Zhu, W.; Shaban, H.; Hassaballah, M. Optimal Sink Node Placement in Large Scale Wireless Sensor Networks Based on Harris’ Hawk Optimization Algorithm. IEEE Access 2020, 8, 19381–19397. [Google Scholar] [CrossRef]
- Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of convolutional neural network. Swarm Evol. Comput. 2021, 63, 100863. [Google Scholar] [CrossRef]
- Wu, T.Y.; Li, H.; Chu, S.C. CPPE: An Improved Phasmatodea Population Evolution Algorithm with Chaotic Maps. Mathematics 2023, 11, 1977. [Google Scholar] [CrossRef]
- Shaik, A.L.H.P.; Manoharan, M.K.; Pani, A.K.; Avala, R.R.; Chen, C.M. Gaussian Mutation–Spider Monkey Optimization (GM-SMO) Model for Remote Sensing Scene Classification. Remote Sens. 2022, 14, 6279. [Google Scholar] [CrossRef]
- Xue, X.; Guo, J.; Ye, M.; Lv, J. Similarity Feature Construction for Matching Ontologies through Adaptively Aggregating Artificial Neural Networks. Mathematics 2023, 11, 485. [Google Scholar] [CrossRef]
- Li, D.; Xiao, P.; Zhai, R.; Sun, Y.; Wenbin, H.; Ji, W. Path Planning of Welding Robots Based on Developed Whale Optimization Algorithm. In Proceedings of the 2021 6th International Conference on Control, Robotics and Cybernetics (CRC), Shanghai, China, 9–11 October 2021; pp. 101–105. [Google Scholar] [CrossRef]
- Chen, C.M.; Lv, S.; Ning, J.; Wu, J.M.T. A Genetic Algorithm for the Waitable Time-Varying Multi-Depot Green Vehicle Routing Problem. Symmetry 2023, 15, 124. [Google Scholar] [CrossRef]
- Chuang, L.Y.; Chang, H.W.; Tu, C.J.; Yang, C.H. Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 2008, 32, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Xue, X. Complex ontology alignment for autonomous systems via the Compact Co-Evolutionary Brain Storm Optimization algorithm. ISA Trans. 2023, 132, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Wang, C.J. A GA-based feature selection and parameters optimizationfor support vector machines. Expert Syst. Appl. 2006, 31, 231–240. [Google Scholar] [CrossRef]
- Ziadeh, A.; Abualigah, L.; Elaziz, M.A.; Şahin, C.B.; Almazroi, A.A.; Omari, M. Augmented grasshopper optimization algorithm by differential evolution: A power scheduling application in smart homes. Multimed. Tools Appl. 2021, 80, 31569–31597. [Google Scholar] [CrossRef]
- Sheikholeslami, R.; Kaveh, A.a. A Survey of chaos embedded meta-heuristic algorithms. Int. J. Optim. Civ. Eng. 2013, 3, 617–633. [Google Scholar]
- Rajabioun, R. Cuckoo optimization algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [Google Scholar] [CrossRef]
- Bastos Filho, C.J.A.; de Lima Neto, F.B.; Lins, A.J.C.C.; Nascimento, A.I.S.; Lima, M.P. A novel search algorithm based on fish school behavior. In Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 12–15 October 2008; pp. 2646–2651. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Rahnamayan, S.; Liu, Y.; Ventresca, M. Enhancing particle swarm optimization using generalized opposition-based learning. Inf. Sci. 2011, 181, 4699–4714. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.G. Improved elephant herding optimization using opposition-based learning and K-means clustering to solve numerical optimization problems. J. Ambient Intell. Humaniz. Comput. 2023, 14, 1753–1784. [Google Scholar] [CrossRef]
- Khamkar, R.; Das, P.; Namasudra, S. SCEOMOO: A novel Subspace Clustering approach using Evolutionary algorithm, Off-spring generation and Multi-Objective Optimization. Appl. Soft Comput. 2023, 139, 110185. [Google Scholar] [CrossRef]
- Bajer, D.; Martinović, G.; Brest, J. A population initialization method for evolutionary algorithms based on clustering and Cauchy deviates. Expert Syst. Appl. 2016, 60, 294–310. [Google Scholar] [CrossRef]
- Poikolainen, I.; Neri, F.; Caraffini, F. Cluster-Based Population Initialization for differential evolution frameworks. Inf. Sci. 2015, 297, 216–235. [Google Scholar] [CrossRef]
- Chuang, L.Y.; Hsiao, C.J.; Yang, C.H. Chaotic particle swarm optimization for data clustering. Expert Syst. Appl. 2011, 38, 14555–14563. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Ding, G.; Tu, L. Adaptive chimp optimization algorithm with chaotic map for global numerical optimization problems. J. Supercomput. 2022, 79, 6507–6537. [Google Scholar] [CrossRef]
- Gao, W.f.; Liu, S.y.; Huang, L.l. Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4316–4327. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Zhang, X.; Hu, G. Elite Chaotic Manta Ray Algorithm Integrated with Chaotic Initialization and Opposition-Based Learning. Mathematics 2022, 10, 2960. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yun, G.J.; Yang, X.S.; Talatahari, S. Chaos-enhanced accelerated particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 327–340. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 2017, 32, 1079–1088. [Google Scholar] [CrossRef]
- Kohli, M.; Arora, S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 2018, 5, 458–472. [Google Scholar] [CrossRef]
- Jia, D.; Zheng, G.; Khan, M.K. An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 2011, 181, 3175–3187. [Google Scholar] [CrossRef]
- Pan, J.S.; Yang, Q.; Shieh, C.S.; Chu, S.C. Tumbleweed Optimization Algorithm and Its Application in Vehicle Path Planning in Smart City. J. Internet Technol. 2022, 23, 927–945. [Google Scholar]
- Sayed, G.I.; Darwish, A.; Hassanien, A.E. A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. J. Exp. Theor. Artif. Intell. 2018, 30, 293–317. [Google Scholar] [CrossRef]
- Du, T.S.; Ke, X.T.; Liao, J.G.; Shen, Y.J. DSLC-FOA: Improved fruit fly optimization algorithm for application to structural engineering design optimization problems. Appl. Math. Model. 2018, 55, 314–339. [Google Scholar] [CrossRef]
- Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Clust. Comput. 2019, 22, 4745–4766. [Google Scholar] [CrossRef]
- Kaveh, A.; Mahdipour Moghanni, R.; Javadi, S. Optimum design of large steel skeletal structures using chaotic firefly optimization algorithm based on the Gaussian map. Struct. Multidiscip. Optim. 2019, 60, 879–894. [Google Scholar] [CrossRef]
- Demidova, L.A.; Gorchakov, A.V. A study of chaotic maps producing symmetric distributions in the fish school search optimization algorithm with exponential step decay. Symmetry 2020, 12, 784. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Guo, Q. Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization. KSCE J. Civ. Eng. 2020, 24, 3703–3713. [Google Scholar] [CrossRef]
- Agrawal, P.; Ganesh, T.; Mohamed, A.W. Chaotic gaining sharing knowledge-based optimization algorithm: An improved metaheuristic algorithm for feature selection. Soft Comput. 2021, 25, 9505–9528. [Google Scholar] [CrossRef]
- Li, X.D.; Wang, J.S.; Hao, W.K.; Zhang, M.; Wang, M. Chaotic arithmetic optimization algorithm. Appl. Intell. 2022, 52, 16718–16757. [Google Scholar] [CrossRef]
- Onay, F.K.; Aydemir, S.B. Chaotic hunger games search optimization algorithm for global optimization and engineering problems. Math. Comput. Simul. 2022, 192, 514–536. [Google Scholar] [CrossRef]
- Yang, P.; Wang, T.; Yang, H.; Meng, C.; Zhang, H.; Cheng, L. The Performance of Electronic Current Transformer Fault Diagnosis Model: Using an Improved Whale Optimization Algorithm and RBF Neural Network. Electronics 2023, 12, 1066. [Google Scholar] [CrossRef]
- Chaoxi, L.; Lifang, H.; Songwei, H.; Bin, H.; Changzhou, Y.; Lingpan, D. An improved bald eagle algorithm based on Tent map and Levy flight for color satellite image segmentation. Signal Image Video Process. 2023, 1–9. [Google Scholar] [CrossRef]
- Naik, A. Chaotic Social Group Optimization for Structural Engineering Design Problems. J. Bionic Eng. 2023, 1–26. [Google Scholar] [CrossRef]
- Phatak, S.C.; Rao, S.S. Logistic map: A possible random-number generator. Phys. Rev. E 1995, 51, 3670–3678. [Google Scholar] [CrossRef]
- Devaney, R.L. A piecewise linear model for the zones of instability of an area-preserving map. Phys. D Nonlinear Phenom. 1984, 10, 387–393. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Oliva, D.; Ewees, A.A.; Lu, S. Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning. In Proceedings of the International Conference on Neural Information Processing, Long Beach, CA, USA, 4–9 December 2017; pp. 156–166. [Google Scholar]
- Hua, Z.; Zhou, Y. Image encryption using 2D Logistic-adjusted-Sine map. Inf. Sci. 2016, 339, 237–253. [Google Scholar] [CrossRef]
- Driebe, D.J. The bernoulli map. In Fully Chaotic Maps and Broken Time Symmetry; Springer: Berlin/Heidelberg, Germany, 1999; pp. 19–43. [Google Scholar]
- Jensen, M.H.; Bak, P.; Bohr, T. Complete devil’s staircase, fractal dimension, and universality of mode-locking structure in the circle map. Phys. Rev. Lett. 1983, 50, 1637. [Google Scholar] [CrossRef]
- Rogers, T.D.; Whitley, D.C. Chaos in the cubic mapping. Math. Model. 1983, 4, 9–25. [Google Scholar] [CrossRef]
- Sayed, G.I.; Darwish, A.; Hassanien, A.E. A new chaotic whale optimization algorithm for features selection. J. Classif. 2018, 35, 300–344. [Google Scholar] [CrossRef]
- Liu, W.; Sun, K.; He, Y.; Yu, M. Color image encryption using three-dimensional sine ICMIC modulation map and DNA sequence operations. Int. J. Bifurc. Chaos 2017, 27, 1750171. [Google Scholar] [CrossRef]
- Li, X.; Engelbrecht, A.; Epitropakis, M.G. Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization; RMIT University, Evolutionary Computation and Machine Learning Group: Melbourne, Australia, 2013. [Google Scholar]
Literature | Chaotic Map + Metaheuristics | Optimization Problem | Conclusions |
---|---|---|---|
[39] | sinusoidal map + MVO | engineering and mechanical design | CMVO better than MVO |
[40] | logical map + FOA | structural engineering design optimization | CFOA better than FOA |
[41] | sine map + PSO | Bezier curve-based path planning | higher accuracy than PSO |
[42] | Gauss map + GFA | optimum design of large steel skeletal structures | CGFA can improve convergence speed |
[43] | tent map + FSS | symmetric distributions | faster convergence speed and better precision in high-dimensional optimization |
[44] | tent map + WOA | application in structural optimization | CWOA better than WOA |
[45] | Chebyshev map + GSK | feature selection | improved the original algorithm’s performance accuracy and convergence speed |
[46] | piecewise map + AOA | engineering design issues | enhanced the convergence accuracy |
[47] | sine map + HGS | global optimization and engineering problems | better results than HGS |
[48] | tent map + WOA | optimized the parameters and network size of RBFNN | faster convergence speed and powerful exploration ability |
[49] | tent map + BEA | color satellite image segmentation | CBEA can expand the diversity of the population and search space |
[50] | logistic map + SGO | structural engineering design problems | CSGO obtained better convergence quality and accuracy |
Symbol | Meaning |
---|---|
Tumbleweed population | |
G | Subpopulation |
K | Maximum number of iterations |
Individual fitness | |
Local best individual | |
Global best individual | |
Search space upper bound | |
Search space lower bound |
Symbol | Preset Value |
---|---|
100 | |
50 | |
300 | |
dim | 30, 50, 100 |
Symbol | Meaning |
---|---|
CTOA1 | TOA + logistic map [51] |
CTOA2 | TOA + piecewise map [52] |
CTOA3 | TOA + singer map [53] |
CTOA4 | TOA + sine map [54] |
CTOA5 | TOA + Gauss map [42] |
CTOA6 | TOA + tent map [43] |
CTOA7 | TOA + Bernoulli map [55] |
CTOA8 | TOA + Chebyshev map [55] |
CTOA9 | TOA + circle map [56] |
CTOA10 | TOA + cubic map [57] |
CTOA11 | TOA + sinusoidal map [58] |
CTOA12 | TOA + ICMIC map [59] |
Unimodal Functions | |
---|---|
Symbol | Name |
F1 | Sphere |
F2 | Rotated High Conditioned Elliptic |
F3 | Rotated Bent Cigar |
F4 | Rotated Discus |
F5 | Different Powers |
Multimodal Functions | |
---|---|
Symbol | Name |
F6 | Rotated Rosenbrock’s Function |
F7 | Rotated Schaffers F7 Function |
F8 | Rotated Ackley’s Function |
F9 | Rotated Weierstrass Function |
F10 | Rotated Griewank’s Function |
F11 | Rastrigin’s Function |
F12 | Rotated Rastrigin’s Function |
F13 | Non-Continuous Rotated Rastrigin’s Function |
F14 | Schwefel’s Function |
F15 | Rotated Schwefel’s Function |
F16 | Rotated Katsuura Function |
F17 | Lunacek Bi_Rastrigin Function |
F18 | Rotated Lunacek Bi_Rastrigin Function |
F19 | Expanded Griewank’s plus Rosenbrock’s Function |
F20 | Expanded Scaffer’s F6 Functionn |
Composition Functions | |
---|---|
Symbol | Name |
F21 | Composition Function 1 (n = 5, Rotated) |
F22 | Composition Function 2 (n = 3, Unrotated) |
F23 | Composition Function 3 (n = 3, Rotated) |
F24 | Composition Function 4 (n = 3, Rotated) |
F25 | Composition Function 5 (n = 3, Rotated) |
F26 | Composition Function 6 (n = 5, Rotated) |
F27 | Composition Function 7 (n = 5, Rotated) |
F28 | Composition Function 8 (n = 5, Rotated) |
F1 | Best | Mean | Std | F2 | Best | Mean | Std |
TOA | 1.430592755 | 4.641731 | 2.480966 | TOA | 11,473,867.54 | 34,462,604.66 | 14,601,957 |
CTOA1 | 1.356563975 | 4.821175 | 2.266016 | CTOA1 | 13,145,120.42 | 40,300,671.68 | 14,502,168 |
CTOA2 | 2.172104923 | 5.053772 | 2.030593 | CTOA2 | 15,487,711.82 | 37,557,028.96 | 14,565,769 |
CTOA3 | 2.172104923 | 4.657546 | 2.175062 | CTOA3 | 15,487,711.82 | 38,253,389.61 | 16,509,389 |
CTOA4 | 1.546960909 | 4.428686 | 2.417921 | CTOA4 | 6,523,850.195 | 35,940,710.69 | 17,492,089 |
CTOA5 | 1.837306316 | 4.976843 | 2.274063 | CTOA5 | 9,265,487.406 | 31,802,326.54 | 13,703,389 |
CTOA6 | 1.224058288 | 4.485701 | 1.835378 | CTOA6 | 16,328,752.4 | 34,694,526.92 | 13,762,606 |
CTOA7 | 1.123754048 | 4.805862 | 2.795162 | CTOA7 | 6,257,637.872 | 36,435,707.09 | 16,837,924 |
CTOA8 | 1.725739828 | 5.240968 | 2.542584 | CTOA8 | 12,313,227 | 38,175,833.98 | 15,679,630 |
CTOA9 | 0.888030114 | 3.973734 | 1.635657 | CTOA9 | 11,532,968.2 | 31,333,746.02 | 12,639,456 |
CTOA10 | 1.861330464 | 4.274323 | 1.990519 | CTOA10 | 14,008,982.47 | 34,391,752.87 | 15,362,061 |
CTOA11 | 1.653179427 | 4.358769 | 1.778436 | CTOA11 | 10,443,066.7 | 38,167,456.83 | 17,836,779 |
CTOA12 | 1.173376114 | 4.510318 | 2.069676 | CTOA12 | 5,277,183.485 | 34,464,024.71 | 11,813,327 |
F3 | Best | Mean | Std | F4 | Best | Mean | Std |
TOA | TOA | 35,475.60207 | 73,183.97463 | 18,858.371 | |||
CTOA1 | CTOA1 | 38,800.81737 | 77,107.95584 | 19,576.841 | |||
CTOA2 | CTOA2 | 21,634.29326 | 70,535.35488 | 22,998.472 | |||
CTOA3 | CTOA3 | 21,634.29326 | 71,190.58643 | 18,545.374 | |||
CTOA4 | CTOA4 | 33,931.41384 | 77,808.57394 | 18,384.651 | |||
CTOA5 | CTOA5 | 37,761.57951 | 70,942.00626 | 19,069.629 | |||
CTOA6 | CTOA6 | 28,886.6629 | 73,846.69415 | 23,766.912 | |||
CTOA7 | CTOA7 | 39,749.64181 | 74,221.0471 | 19,434.414 | |||
CTOA8 | CTOA8 | 29,124.27816 | 72,806.70522 | 20,911.395 | |||
CTOA9 | CTOA9 | 27,021.25272 | 56,943.74888 | 16,380.353 | |||
CTOA10 | CTOA10 | 38,838.69185 | 75,038.99139 | 21,096.963 | |||
CTOA11 | CTOA11 | 31,035.217 | 71,643.12255 | 19,231.639 | |||
CTOA12 | CTOA12 | 33,858.73636 | 72,004.99112 | 20,686.456 | |||
F5 | Best | Mean | Std | F6 | Best | Mean | Std |
CTOA | 6.641295 | 43.86907 | 33.70866 | CTOA | 23.26008 | 75.81029 | 30.20365 |
CTOA1 | 7.240699 | 50.98158 | 43.35798 | CTOA1 | 29.37788 | 82.79009 | 30.15121 |
CTOA2 | 7.448614 | 45.8111 | 33.21403 | CTOA2 | 23.13454 | 86.01479 | 37.35468 |
CTOA3 | 7.448614 | 47.1076 | 39.57283 | CTOA3 | 23.13454 | 84.56738 | 27.91947 |
CTOA4 | 7.229537 | 54.54368 | 36.60177 | CTOA4 | 21.10389 | 75.55618 | 30.1907 |
CTOA5 | 8.671002 | 55.66441 | 42.5454 | CTOA5 | 24.53502 | 85.32412 | 35.90527 |
CTOA6 | 8.313796 | 53.25556 | 38.6086 | CTOA6 | 26.59667 | 82.49312 | 30.82995 |
CTOA7 | 5.533057 | 42.19865 | 32.58633 | CTOA7 | 22.55549 | 80.02851 | 32.46554 |
CTOA8 | 4.249546 | 53.05737 | 40.30658 | CTOA8 | 30.61643 | 83.21242 | 32.14927 |
CTOA9 | 7.34457 | 42.41004 | 35.593 | CTOA9 | 20.84706 | 84.79518 | 33.58295 |
CTOA10 | 4.87272 | 49.02898 | 37.55706 | CTOA10 | 17.78542 | 73.81029 | 27.75425 |
CTOA11 | 6.820977 | 51.17952 | 35.98522 | CTOA11 | 21.03715 | 78.78057 | 28.70238 |
CTOA12 | 7.154989 | 47.78411 | 38.08524 | CTOA12 | 23.17294 | 76.62523 | 28.75425 |
F7 | Best | Mean | Std | F8 | Best | Mean | Std |
TOA | 69.42176 | 172.0952 | 49.69714 | TOA | 20.87601 | 21.05851 | 0.057536 |
CTOA1 | 74.3429 | 164.016 | 40.48377 | CTOA1 | 20.98392 | 21.08069 | 0.039275 |
CTOA2 | 52.15573 | 169.4007 | 50.64785 | CTOA2 | 20.97782 | 21.08017 | 0.047848 |
CTOA3 | 52.15573 | 169.0283 | 59.16052 | CTOA3 | 20.97782 | 21.05609 | 0.056827 |
CTOA4 | 57.95494 | 164.9569 | 48.58436 | CTOA4 | 20.84488 | 21.05512 | 0.066816 |
CTOA5 | 65.19426 | 146.1801 | 45.96157 | CTOA5 | 20.92916 | 21.0642 | 0.053411 |
CTOA6 | 62.15799 | 162.4576 | 53.75279 | CTOA6 | 20.88531 | 21.06649 | 0.056811 |
CTOA7 | 69.76826 | 157.5119 | 46.9178 | CTOA7 | 20.93686 | 21.06587 | 0.048774 |
CTOA8 | 64.50866 | 172.4547 | 57.10363 | CTOA8 | 20.93791 | 21.05956 | 0.057127 |
CTOA9 | 62.14251 | 143.9033 | 50.76479 | CTOA9 | 20.78702 | 21.06498 | 0.061698 |
CTOA10 | 65.2948 | 167.2855 | 58.53906 | CTOA10 | 20.84606 | 21.05344 | 0.063907 |
CTOA11 | 74.50113 | 159.8454 | 56.96794 | CTOA11 | 20.85003 | 21.04871 | 0.058645 |
TOA12 | 49.67303 | 150.4142 | 55.90276 | TOA12 | 20.92519 | 21.06103 | 0.059276 |
F9 | Best | Mean | Std | F10 | Best | Mean | Std |
TOA | 19.47632 | 30.36987 | 3.079732 | TOA | 26.22931 | 82.35212 | 26.96656 |
CTOA1 | 23.6859 | 30.08422 | 2.410925 | CTOA1 | 36.85686 | 87.32382 | 29.07486 |
CTOA2 | 18.96248 | 30.19011 | 3.150221 | CTOA2 | 36.19492 | 84.57543 | 27.17525 |
CTOA3 | 18.96248 | 30.13138 | 3.067458 | CTOA3 | 36.19492 | 87.67734 | 30.95377 |
CTOA4 | 22.84056 | 30.6682 | 2.287681 | CTOA4 | 35.7127 | 87.19001 | 32.80739 |
CTOA5 | 20.81174 | 29.67086 | 2.776753 | CTOA5 | 27.46838 | 81.2549 | 30.55649 |
CTOA6 | 21.76101 | 28.90034 | 2.665711 | CTOA6 | 38.87631 | 86.58836 | 29.73541 |
CTOA7 | 25.24309 | 30.58017 | 2.705951 | CTOA7 | 33.20027 | 79.27575 | 28.61971 |
CTOA8 | 18.28933 | 30.58495 | 2.794156 | CTOA8 | 26.14432 | 83.678 | 34.17651 |
CTOA9 | 18.94317 | 29.24522 | 2.631635 | CTOA9 | 23.38867 | 73.87533 | 25.42127 |
CTOA10 | 23.18855 | 29.95208 | 2.470231 | CTOA10 | 21.04443 | 81.61116 | 29.87273 |
CTOA11 | 19.05223 | 29.73277 | 3.148697 | CTOA11 | 17.86598 | 92.65487 | 39.57157 |
CTOA12 | 20.69468 | 29.59942 | 3.377856 | CTOA12 | 26.10178 | 84.09473 | 23.51075 |
F11 | Best | Mean | Std | F12 | Best | Mean | Std |
TOA | 83.99478 | 184.951 | 68.01735 | TOA | 91.25174 | 211.4995 | 55.09605 |
CTOA1 | 52.58211 | 189.8489 | 85.23317 | CTOA1 | 88.95786 | 198.6493 | 76.84806 |
CTOA2 | 78.39617 | 184.2122 | 66.12921 | CTOA2 | 124.0647 | 219.8842 | 53.86497 |
CTOA3 | 78.39617 | 160.9085 | 80.6409 | CTOA3 | 124.0647 | 221.2579 | 85.30896 |
CTOA4 | 68.34443 | 172.4444 | 82.54131 | CTOA4 | 94.24765 | 218.445 | 77.4122 |
CTOA5 | 93.28622 | 188.8487 | 70.54447 | CTOA5 | 82.40928 | 222.4609 | 52.09472 |
CTOA6 | 61.4155 | 181.6452 | 71.13292 | CTOA6 | 122.7949 | 202.9098 | 40.47806 |
CTOA7 | 97.55595 | 191.7591 | 66.90959 | CTOA7 | 98.03852 | 234.5548 | 84.43587 |
CTOA8 | 60.38598 | 184.2558 | 83.72744 | CTOA8 | 69.61156 | 215.1982 | 75.49402 |
CTOA9 | 84.5647 | 149.2546 | 43.80927 | CTOA9 | 96.40827 | 199.086 | 50.27889 |
CTOA10 | 71.89555 | 181.625 | 102.8933 | CTOA10 | 64.21004 | 213.7707 | 69.99723 |
CTOA11 | 59.81794 | 183.3453 | 91.25827 | CTOA11 | 85.6472 | 217.8867 | 71.39717 |
CTOA12 | 53.47842 | 164.3092 | 66.89424 | CTOA12 | 61.59151 | 204.1543 | 57.38563 |
F13 | Best | Mean | Std | F14 | Best | Mean | Std |
TOA | 158.7791 | 230.7484 | 34.13018 | TOA | 370.135 | 4981.427 | 1395.315 |
CTOA1 | 75.41791 | 237.9464 | 49.72082 | CTOA1 | 2590.528 | 5234.083 | 1,164.151 |
CTOA2 | 152.7115 | 236.5774 | 36.13152 | CTOA2 | 2229.513 | 5326.335 | 1309.164 |
CTOA3 | 152.7115 | 223.2597 | 31.3048 | CTOA3 | 2229.513 | 4330.862 | 1383.245 |
CTOA4 | 127.9629 | 227.1254 | 33.32703 | CTOA4 | 2113.416 | 4909.046 | 1347.483 |
CTOA5 | 153.3039 | 245.4698 | 38.51728 | CTOA5 | 2181.083 | 5726.357 | 1279.679 |
CTOA6 | 131.3499 | 239.4234 | 45.30911 | CTOA6 | 1049.555 | 5145.848 | 1378.694 |
CTOA7 | 141.2002 | 238.685 | 40.63646 | CTOA7 | 2658.65 | 5166.621 | 1272.206 |
CTOA8 | 159.901 | 238.103 | 41.95559 | CTOA8 | 2192.565 | 5007.671 | 1432.373 |
CTOA9 | 116.513 | 230.5702 | 37.28941 | CTOA9 | 2256.723 | 5596.839 | 1221.914 |
CTOA10 | 147.9437 | 228.7623 | 39.40842 | CTOA10 | 1657.245 | 4579.721 | 1460.737 |
CTOA11 | 140.8689 | 230.2052 | 37.49626 | CTOA11 | 2925.443 | 5502.232 | 1255.026 |
CTOA12 | 143.2574 | 229.6021 | 35.7941 | CTOA12 | 2371.384 | 5041.32 | 1423.715 |
F15 | Best | Mean | Std | F16 | Best | Mean | Std |
TOA | 5,641.266 | 6,704.208 | 423.7036 | TOA | 2.364631 | 3.197233 | 0.348217 |
CTOA1 | 5,492.424 | 6,700.285 | 536.451 | CTOA1 | 1.804553 | 3.179833 | 0.421851 |
CTOA2 | 5844.424 | 6783.61 | 352.2824 | CTOA2 | 2.431884 | 3.230702 | 0.35488 |
CTOA3 | 5844.424 | 6756.636 | 379.1114 | CTOA3 | 2.431884 | 3.243784 | 0.381423 |
CTOA4 | 5853.198 | 6726.53 | 402.9906 | CTOA4 | 2.043303 | 3.205199 | 0.449456 |
CTOA5 | 5675.896 | 6713.259 | 490.0271 | CTOA5 | 2.403875 | 3.181841 | 0.379426 |
CTOA6 | 5866.364 | 6686.728 | 340.3926 | CTOA6 | 2.140888 | 3.256858 | 0.364961 |
CTOA7 | 5,651.658 | 6727.874 | 415.1401 | CTOA7 | 2.085766 | 3.224259 | 0.427801 |
CTOA8 | 5047.775 | 6879.885 | 503.5179 | CTOA8 | 1.689464 | 3.225949 | 0.389588 |
CTOA9 | 5809.945 | 6596.72 | 407.5732 | CTOA9 | 2.176599 | 3.208446 | 0.396451 |
CTOA10 | 5411.916 | 6665.79 | 456.1787 | CTOA10 | 2.458289 | 3.304063 | 0.319186 |
CTOA11 | 3720.667 | 6728.399 | 612.8474 | CTOA11 | 2.535856 | 3.225695 | 0.371798 |
CTOA12 | 5348.347 | 6662.602 | 518.1656 | CTOA12 | 2.28681 | 3.287651 | 0.369558 |
F17 | Best | Mean | Std | F18 | Best | Mean | Std |
TOA | 191.1994 | 255.4997 | 25.7751 | TOA | 235.7625 | 276.4613 | 21.39819 |
CTOA1 | 187.7217 | 253.7246 | 33.70481 | CTOA1 | 221.4716 | 270.5805 | 21.67858 |
CTOA2 | 169.3405 | 254.9586 | 39.27158 | CTOA2 | 233.0861 | 278.8428 | 21.98578 |
CTOA3 | 169.3405 | 244.7709 | 34.22477 | CTOA3 | 233.0861 | 270.2849 | 24.28905 |
CTOA4 | 186.7281 | 256.2904 | 23.41873 | CTOA4 | 206.8143 | 274.8773 | 29.38987 |
CTOA5 | 192.9143 | 259.269 | 31.58694 | CTOA5 | 203.0203 | 278.0344 | 22.9301 |
CTOA6 | 166.0398 | 256.9565 | 27.88832 | CTOA6 | 190.8338 | 272.6024 | 28.12443 |
CTOA7 | 132.5832 | 251.8977 | 37.64356 | CTOA7 | 210.1343 | 270.0525 | 23.33517 |
CTOA8 | 146.7767 | 250.2936 | 31.07202 | CTOA8 | 225.6414 | 273.9212 | 26.46477 |
CTOA9 | 206.8276 | 258.6434 | 23.38194 | CTOA9 | 232.0053 | 278.0042 | 19.69428 |
CTOA10 | 173.7475 | 244.1345 | 27.17231 | CTOA10 | 219.1796 | 276.0129 | 22.75225 |
CTOA11 | 182.298 | 244.3409 | 24.40894 | CTOA11 | 198.8819 | 271.6275 | 27.12828 |
CTOA12 | 169.2201 | 248.6996 | 39.51309 | CTOA12 | 191.3392 | 268.9461 | 23.80379 |
F19 | Best | Mean | Std | F20 | Best | Mean | Std |
TOA | 8.823527 | 16.3698 | 2.460191 | TOA | 12.11205 | 13.77631 | 0.857837 |
CTOA1 | 9.968513 | 15.65698 | 2.717404 | CTOA1 | 12.02135 | 14.121 | 0.944627 |
CTOA2 | 9.507782 | 16.17751 | 2.687117 | CTOA2 | 12.1312 | 13.7874 | 0.966827 |
CTOA3 | 9.507782 | 15.98989 | 2.328031 | CTOA3 | 12.1312 | 14.70137 | 0.623059 |
CTOA4 | 7.683536 | 15.54814 | 2.957507 | CTOA4 | 12.10369 | 13.90993 | 1.000377 |
CTOA5 | 9.423743 | 16.86574 | 3.039682 | CTOA5 | 12.26715 | 13.8474 | 0.922043 |
CTOA6 | 9.344505 | 16.18553 | 2.596153 | CTOA6 | 12.45917 | 13.95253 | 0.9019 |
CTOA7 | 10.22913 | 16.58573 | 2.306279 | CTOA7 | 12.24273 | 13.85383 | 0.870465 |
CTOA8 | 10.33814 | 17.476 | 2.959561 | CTOA8 | 12.19564 | 14.27576 | 0.937514 |
CTOA9 | 7.663299 | 16.29275 | 2.838714 | CTOA9 | 12.11917 | 13.35693 | 0.829536 |
CTOA10 | 9.866316 | 16.15057 | 2.232672 | CTOA10 | 12.03096 | 14.42613 | 0.862933 |
CTOA11 | 9.879782 | 16.27021 | 2.127274 | CTOA11 | 12.64206 | 13.82569 | 0.896084 |
CTOA12 | 10.8117 | 16.41916 | 2.60959 | CTOA12 | 12.29212 | 14.28751 | 0.881478 |
F21 | Best | Mean | Std | F22 | Best | Mean | Std |
TOA | 221.5507 | 320.7292 | 77.89905 | TOA | 2492.254 | 5457.696 | 1573.757 |
CTOA1 | 224.3926 | 338.6655 | 67.01389 | CTOA1 | 2492.687 | 5158.906 | 1359.081 |
CTOA2 | 228.3312 | 345.0221 | 70.27384 | CTOA2 | 2447.092 | 5314.307 | 1589.62 |
CTOA3 | 228.3312 | 390.3265 | 75.39317 | CTOA3 | 2447.092 | 4512.892 | 1469.588 |
CTOA4 | 223.1676 | 317.3854 | 59.91028 | CTOA4 | 2290.699 | 5077.663 | 1546.049 |
CTOA5 | 229.7998 | 345.6994 | 63.40178 | CTOA5 | 2525.532 | 5355.718 | 1510.444 |
CTOA6 | 221.131 | 327.843 | 70.1972 | CTOA6 | 2145.753 | 5356.283 | 1524.727 |
CTOA7 | 226.7677 | 330.3168 | 80.79807 | CTOA7 | 2389.541 | 4995.464 | 1485.753 |
CTOA8 | 239.3515 | 372.9876 | 63.48176 | CTOA8 | 2807.814 | 5130.634 | 1500.005 |
CTOA9 | 151.2828 | 340.4276 | 85.9303 | CTOA9 | 1767.661 | 5502.564 | 1575.352 |
CTOA10 | 231.9426 | 366.2842 | 66.6869 | CTOA10 | 2085.168 | 4617.966 | 1366.792 |
CTOA11 | 144.8216 | 326.723 | 64.16248 | CTOA11 | 1726.552 | 5435.613 | 1503.185 |
CTOA12 | 227.8882 | 355.7093 | 71.40169 | CTOA12 | 2573.423 | 5136.566 | 1429.554 |
F23 | Best | Mean | Std | F24 | Best | Mean | Std |
TOA | 5745.163 | 6987.26 | 593.466 | TOA | 258.6309 | 280.5159 | 9.064905 |
CTOA1 | 4752.849 | 7019.605 | 578.4228 | CTOA1 | 255.5681 | 281.4412 | 9.676793 |
CTOA2 | 5733.22 | 6849.891 | 509.0746 | CTOA2 | 261.4231 | 278.0223 | 9.020633 |
CTOA3 | 5733.22 | 7083.667 | 634.6992 | CTOA3 | 261.4231 | 280.7545 | 10.68703 |
CTOA4 | 3445.902 | 7021.244 | 746.902 | CTOA4 | 257.7895 | 280.7787 | 8.778902 |
CTOA5 | 4346.894 | 6910.548 | 693.303 | CTOA5 | 261.2685 | 281.4815 | 9.309686 |
CTOA6 | 5486.644 | 7006.287 | 534.5366 | CTOA6 | 254.2371 | 280.8182 | 8.424572 |
CTOA7 | 4405.119 | 6904.682 | 596.9329 | CTOA7 | 262.5834 | 282.3798 | 10.07625 |
CTOA8 | 5926.2 | 7073.831 | 425.523 | CTOA8 | 259.4419 | 281.1743 | 8.740838 |
CTOA9 | 5569.926 | 6909.94 | 562.6803 | CTOA9 | 258.8804 | 278.1883 | 9.733462 |
CTOA10 | 5306.714 | 7035.998 | 605.8532 | CTOA10 | 262.2337 | 280.2527 | 8.71317 |
CTOA11 | 4864.535 | 6960.24 | 550.5438 | CTOA11 | 253.8493 | 281.7362 | 9.510098 |
CTOA12 | 5198.507 | 7067.133 | 589.5727 | CTOA12 | 260.3661 | 281.6952 | 8.436596 |
F25 | Best | Mean | Std | F26 | Best | Mean | Std |
TOA | 273.0118 | 287.2744 | 7.030919 | TOA | 200.6034 | 354.0326 | 59.18926 |
CTOA1 | 268.2402 | 289.4821 | 9.246821 | CTOA1 | 201.2018 | 363.4794 | 39.86875 |
CTOA2 | 263.9079 | 289.2079 | 10.62954 | CTOA2 | 200.9928 | 348.8948 | 61.49499 |
CTOA3 | 263.9079 | 290.1613 | 8.282695 | CTOA3 | 200.9928 | 361.3564 | 45.71191 |
CTOA4 | 271.37 | 290.9549 | 7.802634 | CTOA4 | 200.7299 | 336.1142 | 71.6734 |
CTOA5 | 268.3196 | 288.309 | 9.57809 | CTOA5 | 200.8854 | 323.861 | 78.67613 |
CTOA6 | 272.7219 | 289.6455 | 8.917811 | CTOA6 | 201.0962 | 342.5849 | 67.12981 |
CTOA7 | 270.4478 | 287.1193 | 8.792928 | CTOA7 | 200.9794 | 324.4437 | 79.27322 |
CTOA8 | 261.0774 | 286.462 | 9.807126 | CTOA8 | 200.9593 | 345.9068 | 64.36845 |
CTOA9 | 274.7382 | 288.257 | 7.665817 | CTOA9 | 200.6327 | 300.2476 | 84.35678 |
CTOA10 | 261.1317 | 290.5119 | 9.435829 | CTOA10 | 201.4667 | 351.6566 | 58.12046 |
CTOA11 | 271.1873 | 288.9337 | 8.883081 | CTOA11 | 201.7781 | 356.0028 | 54.79191 |
CTOA12 | 271.8485 | 288.5178 | 10.21368 | CTOA12 | 200.4804 | 347.4318 | 65.64149 |
F27 | Best | Mean | Std | F28 | Best | Mean | Std |
TOA | 871.0711 | 1067.818 | 74.45373 | TOA | 365.7219 | 540.8311 | 331.938 |
CTOA1 | 889.2358 | 1074.299 | 94.31119 | CTOA1 | 382.1719 | 471.1867 | 180.0546 |
CTOA2 | 817.416 | 1060.77 | 96.08947 | CTOA2 | 376.2239 | 487.178 | 229.1578 |
CTOA3 | 817.416 | 1050.325 | 91.33763 | CTOA3 | 376.2239 | 798.954 | 534.3881 |
CTOA4 | 838.4956 | 1062.829 | 87.493 | CTOA4 | 199.8576 | 539.2765 | 344.8095 |
CTOA5 | 848.5246 | 1060.985 | 97.76764 | CTOA5 | 365.4524 | 465.2611 | 176.5598 |
CTOA6 | 913.9902 | 1089.694 | 74.84623 | CTOA6 | 355.3892 | 467.7049 | 228.928 |
CTOA7 | 925.1872 | 1065.879 | 66.1941 | CTOA7 | 362.0028 | 474.912 | 186.4551 |
CTOA8 | 787.3533 | 1051.827 | 95.20461 | CTOA8 | 364.9942 | 716.584 | 493.1192 |
CTOA9 | 802.638 | 1035.468 | 94.99268 | CTOA9 | 173.6509 | 569.9431 | 488.5328 |
CTOA10 | 834.2885 | 1059.74 | 71.8523 | CTOA10 | 372.0484 | 613.7077 | 416.3061 |
CTOA11 | 805.3148 | 1068.097 | 106.2754 | CTOA11 | 358.9237 | 497.9177 | 274.4063 |
CTOA12 | 867.2102 | 1055.543 | 79.59421 | CTOA12 | 368.3432 | 595.7947 | 412.9015 |
F1 | Best | Mean | Std | F2 | Best | Mean | Std |
TOA | 47.93336 | 95.11479 | 28.91364 | TOA | 41,084,347.19 | 99,934,056.86 | 34,099,495.64 |
CTOA1 | 34.9045 | 94.45528 | 32.11812 | CTOA1 | 42,291,631.58 | 118,694,884.5 | 53,959,926.18 |
CTOA2 | 47.43622 | 92.69795 | 28.15622 | CTOA2 | 31,492,325.05 | 98,563,069.62 | 35,177,164.77 |
CTOA3 | 47.43622 | 103.5596 | 39.20834 | CTOA3 | 31,492,325.05 | 85,470,333.09 | 32,099,117.51 |
CTOA4 | 40.57444 | 93.33722 | 32.53762 | CTOA4 | 52,376,457.15 | 105,263,004.5 | 34,615,169.58 |
CTOA5 | 36.31797 | 89.70178 | 29.7691 | CTOA5 | 26,539,157.33 | 96,278,699.58 | 33,363,342.28 |
CTOA6 | 35.32903 | 79.83578 | 25.19787 | CTOA6 | 36,551,438.45 | 102,373,582.7 | 34,779,463.74 |
CTOA7 | 32.20098 | 93.57819 | 25.68838 | CTOA7 | 34,362,723.34 | 108,909,903.4 | 37,210,665.71 |
CTOA8 | 50.29742 | 97.94228 | 30.97021 | CTOA8 | 32,613,735.73 | 99,479,035.01 | 38,945,154.25 |
CTOA9 | 27.19391 | 82.61719 | 25.84005 | CTOA9 | 34,431,771.11 | 91,858,862.99 | 33,124,113.91 |
CTOA10 | 37.86909 | 96.3431 | 31.09465 | CTOA10 | 49,408,842.68 | 95,765,681.89 | 32,726,320.96 |
CTOA11 | 30.1694 | 93.62948 | 35.38649 | CTOA11 | 39,317,874.31 | 114,310,927.2 | 36,819,144.93 |
CTOA12 | 36.27405 | 102.8991 | 36.37749 | CTOA12 | 30,172,910.2 | 93,505,723.77 | 33,490,234.19 |
F3 | Best | Mean | Std | F4 | Best | Mean | Std |
TOA | TOA | 84,777.91 | 131,966.9 | 26,642.19 | |||
CTOA1 | CTOA1 | 74,253.14 | 145,774.3 | 28,144.54 | |||
CTOA2 | CTOA2 | 80,255.77 | 13,0762 | 26,760.39 | |||
CTOA3 | CTOA3 | 80,255.77 | 144,831.5 | 22,728.45 | |||
CTOA4 | CTOA4 | 84,808.8 | 138,823.9 | 25,367.29 | |||
CTOA5 | CTOA5 | 87,829.8 | 137,195.7 | 30,456.33 | |||
CTOA6 | CTOA6 | 84,565.71 | 137,910.8 | 29,164.56 | |||
CTOA7 | CTOA7 | 72,567.08 | 132,362.6 | 24,210.28 | |||
CTOA8 | CTOA8 | 81,541.39 | 144628.5 | 28,494.84 | |||
CTOA9 | CTOA9 | 44,350.31 | 114,722 | 29,349.97 | |||
CTOA10 | CTOA10 | 77,112.54 | 149,794.9 | 30,334.24 | |||
CTOA11 | CTOA11 | 91,002.13 | 145,502.5 | 29,185.3 | |||
CTOA12 | CTOA12 | 94,817.95 | 141,163.3 | 25,052.11 | |||
F5 | Best | Mean | Std | F6 | Best | Mean | Std |
TOA | 99.03806 | 250.2416 | 56.99093 | TOA | 59.3082 | 138.5892 | 62.55081 |
CTOA1 | 164.8707 | 258.2605 | 48.80763 | CTOA1 | 53.21279 | 138.1261 | 72.29992 |
CTOA2 | 101.2389 | 234.1355 | 53.17557 | CTOA2 | 54.99738 | 134.8758 | 66.50206 |
CTOA3 | 101.2389 | 240.0413 | 43.43521 | CTOA3 | 54.99738 | 125.7091 | 52.0445 |
CTOA4 | 153.2694 | 244.6653 | 55.86586 | CTOA4 | 53.897 | 149.335 | 81.68212 |
CTOA5 | 145.2499 | 250.2859 | 49.50397 | CTOA5 | 60.98863 | 148.4365 | 62.64033 |
CTOA6 | 115.056 | 237.4776 | 50.40263 | CTOA6 | 60.54749 | 176.6171 | 99.92527 |
CTOA7 | 141.4791 | 244.1527 | 56.49436 | CTOA7 | 60.2818 | 145.1284 | 71.4382 |
CTOA8 | 146.7977 | 247.3407 | 46.18892 | CTOA8 | 54.10226 | 121.4684 | 68.49735 |
CTOA9 | 93.25496 | 204.8941 | 49.13547 | CTOA9 | 55.34641 | 184.4958 | 75.70716 |
CTOA10 | 153.3158 | 246.8471 | 51.27477 | CTOA10 | 58.27578 | 134.2529 | 62.65023 |
CTOA11 | 140.5322 | 245.5632 | 50.01144 | CTOA11 | 54.10269 | 151.2276 | 83.53149 |
CTOA12 | 111.2616 | 247.5164 | 53.58613 | CTOA12 | 51.66511 | 140.3907 | 80.9856 |
F7 | Best | Mean | Std | F8 | Best | Mean | Std |
TOA | 145.07 | 220.9826 | 37.64836 | TOA | 21.13861 | 21.23259 | 0.037738 |
CTOA1 | 140.9811 | 225.785 | 35.92001 | CTOA1 | 21.16599 | 21.24026 | 0.035016 |
CTOA2 | 149.2201 | 225.4816 | 41.60381 | CTOA2 | 21.13512 | 21.2329 | 0.042212 |
CTOA3 | 149.2201 | 214.8705 | 40.45722 | CTOA3 | 21.13512 | 21.23274 | 0.032241 |
CTOA4 | 144.899 | 229.977 | 47.38471 | CTOA4 | 21.12333 | 21.23475 | 0.037583 |
CTOA5 | 127.4234 | 217.5407 | 41.26043 | CTOA5 | 21.08971 | 21.23532 | 0.039473 |
CTOA6 | 141.953 | 222.519 | 44.4323 | CTOA6 | 21.06378 | 21.23042 | 0.047104 |
CTOA7 | 146.5261 | 227.5686 | 42.63456 | CTOA7 | 21.11766 | 21.23728 | 0.042119 |
CTOA8 | 134.3188 | 224.0099 | 44.08832 | CTOA8 | 21.10592 | 21.22182 | 0.045104 |
CTOA9 | 153.0399 | 197.5499 | 32.38021 | CTOA9 | 21.13364 | 21.22656 | 0.041457 |
CTOA10 | 152.5624 | 219.9995 | 38.21989 | CTOA10 | 21.11138 | 21.22743 | 0.039115 |
CTOA11 | 156.7244 | 225.0154 | 37.59788 | CTOA11 | 21.11089 | 21.23803 | 0.039791 |
CTOA12 | 156.3481 | 230.7091 | 35.6285 | CTOA12 | 21.09986 | 21.22616 | 0.031283 |
F9 | Best | Mean | Std | F10 | Best | Mean | Std |
TOA | 51.45157 | 59.57449 | 3.825761 | TOA | 201.8683 | 512.4316 | 152.7787 |
CTOA1 | 41.64605 | 59.7855 | 4.621395 | CTOA1 | 223.5617 | 526.1229 | 177.7425 |
CTOA2 | 45.23146 | 59.54556 | 4.797162 | CTOA2 | 222.9015 | 512.9366 | 159.1014 |
CTOA3 | 45.23146 | 59.78384 | 4.70706 | CTOA3 | 222.9015 | 551.9805 | 159.475 |
CTOA4 | 49.61566 | 60.20404 | 3.856908 | CTOA4 | 222.8496 | 545.2075 | 172.0383 |
CTOA5 | 47.34207 | 60.13432 | 3.732362 | CTOA5 | 294.1571 | 522.3137 | 137.4475 |
CTOA6 | 49.42004 | 59.63004 | 3.83985 | CTOA6 | 285.4589 | 524.9346 | 127.5325 |
CTOA7 | 49.59141 | 60.36408 | 4.014266 | CTOA7 | 264.6706 | 507.5844 | 172.0069 |
CTOA8 | 51.06752 | 59.93045 | 4.031302 | CTOA8 | 254.771 | 531.7375 | 155.2429 |
CTOA9 | 44.56648 | 59.30775 | 4.735694 | CTOA9 | 180.2026 | 392.0369 | 133.6758 |
CTOA10 | 46.65123 | 59.13262 | 4.279494 | CTOA10 | 279.9391 | 553.1651 | 151.1298 |
CTOA11 | 45.9285 | 59.80617 | 4.059403 | CTOA11 | 155.7072 | 498.1528 | 185.5661 |
CTOA12 | 43.07219 | 59.4426 | 4.961187 | CTOA12 | 281.5639 | 528.0257 | 148.9916 |
F11 | Best | Mean | Std | F12 | Best | Mean | Std |
TOA | 202.4885 | 425.8454 | 147.228 | TOA | 333.6475 | 564.8086 | 123.9431 |
CTOA1 | 193.1398 | 371.4938 | 158.5099 | CTOA1 | 317.1222 | 525.0204 | 157.263 |
CTOA2 | 207.4459 | 428.3898 | 136.4808 | CTOA2 | 279.2988 | 543.1633 | 97.22959 |
CTOA3 | 207.4459 | 314.6289 | 115.309 | CTOA3 | 279.2988 | 465.4323 | 95.89378 |
CTOA4 | 208.9741 | 399.9909 | 169.4385 | CTOA4 | 310.2108 | 535.3492 | 126.2113 |
CTOA5 | 242.8699 | 443.0413 | 154.8247 | CTOA5 | 338.1129 | 555.84 | 137.8974 |
CTOA6 | 187.5576 | 409.1792 | 143.4178 | CTOA6 | 287.6132 | 539.7874 | 119.8936 |
CTOA7 | 208.0959 | 410.4099 | 155.6475 | CTOA7 | 272.1977 | 543.798 | 120.2503 |
CTOA8 | 177.2906 | 327.4294 | 131.058 | CTOA8 | 257.715 | 508.1558 | 106.0107 |
CTOA9 | 181.8226 | 317.4527 | 63.29728 | CTOA9 | 237.0802 | 495.5171 | 98.54498 |
CTOA10 | 180.6447 | 320.9195 | 115.4608 | CTOA10 | 274.0202 | 528.3227 | 129.1037 |
CTOA11 | 162.8652 | 406.3214 | 200.7118 | CTOA11 | 294.8029 | 519.6554 | 141.327 |
CTOA12 | 169.1461 | 356.275 | 145.6271 | CTOA12 | 270.8147 | 493.449 | 99.98 |
F13 | Best | Mean | Std | F14 | Best | Mean | Std |
TOA | 436.0461 | 567.7784 | 64.67605 | TOA | 6308.859 | 10,709.21 | 1976.852 |
CTOA1 | 381.628 | 545.4609 | 70.37456 | CTOA1 | 6592.325 | 10,332.31 | 2182.163 |
CTOA2 | 428.9403 | 554.1061 | 57.51002 | CTOA2 | 5669.642 | 10,351.63 | 2351.777 |
CTOA3 | 428.9403 | 546.2776 | 73.60519 | CTOA3 | 5669.642 | 9754.155 | 2129.36 |
CTOA4 | 399.2063 | 559.4091 | 71.64018 | CTOA4 | 4981.227 | 10,460.02 | 2225.211 |
CTOA5 | 441.7775 | 557.3963 | 52.42537 | CTOA5 | 5656.661 | 10,577.26 | 2429.533 |
CTOA6 | 429.1183 | 553.5367 | 57.40065 | CTOA6 | 5775.554 | 10,267.94 | 2257.291 |
CTOA7 | 409.0477 | 554.6424 | 72.04844 | CTOA7 | 5269.51 | 10,462.15 | 2136.355 |
CTOA8 | 439.4703 | 544.0158 | 55.05047 | CTOA8 | 5604.988 | 9649.748 | 2224.881 |
CTOA9 | 408.3318 | 535.0959 | 61.93543 | CTOA9 | 5947.821 | 11344.19 | 1745.503 |
CTOA10 | 421.2888 | 541.2879 | 67.65827 | CTOA10 | 5614.678 | 9714.602 | 2152.191 |
CTOA11 | 442.0623 | 544.7147 | 59.228 | CTOA11 | 5914.19 | 10,617.1 | 2068.622 |
CTOA12 | 389.8412 | 555.7978 | 57.31587 | CTOA12 | 4792.576 | 10,080.58 | 2270.388 |
F15 | Best | Mean | Std | F16 | Best | Mean | Std |
TOA | 11,830.1 | 13,501.17 | 581.1357 | TOA | 3.313326 | 4.228536 | 0.365848 |
CTOA1 | 12,583.1 | 13,601.45 | 505.4042 | CTOA1 | 3.294737 | 4.306704 | 0.427229 |
CTOA2 | 11,278.57 | 13,293.68 | 681.5553 | CTOA2 | 3.506279 | 4.215137 | 0.374083 |
CTOA3 | 11,278.57 | 13,496.54 | 654.1637 | CTOA3 | 3.506279 | 4.230933 | 0.45455 |
CTOA4 | 12,209.93 | 13,507.25 | 588.4897 | CTOA4 | 3.074484 | 4.255058 | 0.371441 |
CTOA5 | 11,556.41 | 13,506.37 | 615.3785 | CTOA5 | 3.055281 | 4.345794 | 0.394799 |
CTOA6 | 12,088.27 | 13,549.69 | 589.0859 | CTOA6 | 3.07 | 4.268821 | 0.380532 |
CTOA7 | 11,545 | 13,371.58 | 633.3576 | CTOA7 | 3.379483 | 4.277709 | 0.374405 |
CTOA8 | 11,994.78 | 13,360.58 | 539.282 | CTOA8 | 2.947859 | 4.213767 | 0.445558 |
CTOA9 | 11,274.89 | 13,299 | 723.3836 | CTOA9 | 3.460457 | 4.229747 | 0.401068 |
CTOA10 | 11,426.02 | 13,421.82 | 751.7903 | CTOA10 | 3.134472 | 4.250979 | 0.37598 |
CTOA11 | 10,332.05 | 13,328.76 | 728.8364 | CTOA11 | 3.243943 | 4.160206 | 0.399226 |
CTOA12 | 11,445 | 13,369.95 | 659.8026 | CTOA12 | 3.247016 | 4.296071 | 0.41248 |
F17 | Best | Mean | Std | F18 | Best | Mean | Std |
TOA | 480.3804 | 573.0563 | 41.62288 | TOA | 497.8693 | 612.4716 | 44.17009 |
CTOA1 | 418.0995 | 564.0892 | 55.55246 | CTOA1 | 476.1289 | 594.5204 | 46.58823 |
CTOA2 | 455.7556 | 576.9159 | 49.14111 | CTOA2 | 518.5532 | 612.6539 | 45.57987 |
CTOA3 | 455.7556 | 579.3593 | 65.88425 | CTOA3 | 518.5532 | 614.307 | 39.44276 |
CTOA4 | 455.9066 | 565.2084 | 50.36234 | CTOA4 | 496.0631 | 613.414 | 53.27447 |
CTOA5 | 392.9427 | 574.7266 | 60.17637 | CTOA5 | 514.5905 | 603.9153 | 41.95238 |
CTOA6 | 442.965 | 580.516 | 62.5196 | CTOA6 | 498.523 | 602.945 | 48.8578 |
CTOA7 | 441.4105 | 564.3685 | 56.01363 | CTOA7 | 515.0777 | 608.997 | 49.55836 |
CTOA8 | 470.8075 | 578.2508 | 53.33804 | CTOA8 | 517.8969 | 604.3338 | 42.79912 |
CTOA9 | 417.0029 | 574.8594 | 66.85133 | CTOA9 | 490.2215 | 604.0954 | 48.37033 |
CTOA10 | 478.4479 | 580.2806 | 52.12733 | CTOA10 | 525.3301 | 609.8586 | 46.59068 |
CTOA11 | 505.5884 | 589.0939 | 51.13322 | CTOA11 | 490.6751 | 611.8601 | 52.8092 |
CTOA12 | 430.3107 | 573.8725 | 55.43454 | CTOA12 | 545.5884 | 613.9124 | 41.83909 |
F19 | Best | Mean | Std | F20 | Best | Mean | Std |
TOA | 30.18974 | 44.00778 | 8.1584 | TOA | 21.96708 | 23.69333 | 0.665196 |
CTOA1 | 24.03189 | 41.10034 | 7.445552 | CTOA1 | 22.70291 | 23.72985 | 0.711473 |
CTOA2 | 28.46762 | 44.44436 | 7.782507 | CTOA2 | 22.38762 | 23.57221 | 0.725435 |
CTOA3 | 28.46762 | 45.28228 | 6.061791 | CTOA3 | 22.38762 | 24.70893 | 0.496085 |
CTOA4 | 26.50224 | 43.00992 | 7.174469 | CTOA4 | 22.33911 | 23.73272 | 0.680642 |
CTOA5 | 33.58467 | 43.55086 | 5.655209 | CTOA5 | 22.34395 | 23.64211 | 0.728987 |
CTOA6 | 30.4168 | 43.1112 | 6.12804 | CTOA6 | 22.33165 | 23.59186 | 0.588184 |
CTOA7 | 33.46082 | 43.95716 | 5.581733 | CTOA7 | 22.01768 | 23.78482 | 0.824475 |
CTOA8 | 34.4927 | 45.45706 | 7.094966 | CTOA8 | 22.35792 | 24.26676 | 0.777374 |
CTOA9 | 28.67901 | 44.72493 | 6.887457 | CTOA9 | 22.16108 | 23.33785 | 0.591785 |
CTOA10 | 30.86927 | 42.50062 | 7.678287 | CTOA10 | 22.71713 | 24.21457 | 0.70456 |
CTOA11 | 30.87846 | 42.26517 | 4.838191 | CTOA11 | 22.58374 | 24.04589 | 0.730946 |
CTOA12 | 30.47774 | 43.94989 | 7.037634 | CTOA12 | 22.38252 | 24.08283 | 0.690602 |
F21 | Best | Mean | Std | F22 | Best | Mean | Std |
TOA | 327.7914 | 890.582 | 353.0427 | TOA | 4,905.229 | 10,591.85 | 2416.849 |
CTOA1 | 345.2566 | 971.2165 | 346.4438 | CTOA1 | 6211.514 | 10,631.96 | 2632.582 |
CTOA2 | 352.0457 | 966.1944 | 345.9517 | CTOA2 | 6501.444 | 11,174.2 | 2270.215 |
CTOA3 | 352.0457 | 830.6496 | 385.3888 | CTOA3 | 6501.444 | 10,033.79 | 2348.71 |
CTOA4 | 363.9412 | 1032.962 | 317.326 | CTOA4 | 6121.501 | 10,465.86 | 2039.65 |
CTOA5 | 369.2878 | 996.6293 | 330.4367 | CTOA5 | 6947.346 | 11,076.81 | 2143.838 |
CTOA6 | 350.811 | 926.88 | 352.874 | CTOA6 | 6170.2 | 11,002.7 | 2324.04 |
CTOA7 | 319.4219 | 864.8827 | 380.6891 | CTOA7 | 6678.996 | 10,567.01 | 2363.718 |
CTOA8 | 348.5268 | 868.3168 | 397.7172 | CTOA8 | 6427.289 | 10,406.05 | 2287.282 |
CTOA9 | 328.2194 | 984.5259 | 299.4723 | CTOA9 | 6429.718 | 11,047.88 | 2078.408 |
CTOA10 | 322.234 | 875.9508 | 396.4327 | CTOA10 | 5588.184 | 10,258.95 | 2431.827 |
CTOA11 | 349.8816 | 1015.039 | 330.551 | CTOA11 | 6830.04 | 10,983.99 | 2195.861 |
CTOA12 | 342.6955 | 848.8454 | 390.3914 | CTOA12 | 7121.26 | 10,498.44 | 2159.198 |
F25 | Best | Mean | Std | F26 | Best | Mean | Std |
TOA | 341.3034 | 378.1281 | 14.44046 | TOA | 205.5451 | 442.7682 | 35.61185 |
CTOA1 | 351.4246 | 377.3641 | 13.37185 | CTOA1 | 415.301 | 447.7863 | 11.94769 |
CTOA2 | 334.7624 | 379.2971 | 17.34367 | CTOA2 | 213.0823 | 443.4381 | 34.24711 |
CTOA3 | 334.7624 | 378.0456 | 15.14113 | CTOA3 | 213.0823 | 448.0654 | 13.32695 |
CTOA4 | 343.9612 | 374.4643 | 15.07159 | CTOA4 | 414.787 | 447.5854 | 13.33255 |
CTOA5 | 343.5602 | 376.8531 | 14.64781 | CTOA5 | 207.4477 | 444.2783 | 34.84123 |
CTOA6 | 340.2544 | 369.4993 | 17.96263 | CTOA6 | 208.472 | 438.1162 | 46.3816 |
CTOA7 | 340.5446 | 373.3726 | 15.10695 | CTOA7 | 206.8534 | 440.6653 | 47.70027 |
CTOA8 | 336.583 | 378.7096 | 15.68455 | CTOA8 | 423.6976 | 449.3942 | 11.74123 |
CTOA9 | 339.1641 | 374.3293 | 17.11287 | CTOA9 | 205.9741 | 427.3385 | 70.87132 |
CTOA10 | 333.7473 | 377.9546 | 16.54656 | CTOA10 | 415.857 | 448.6119 | 11.29372 |
CTOA11 | 341.0597 | 375.8586 | 17.06495 | CTOA11 | 415.0986 | 447.5982 | 12.38993 |
CTOA12 | 328.8846 | 375.7387 | 17.23426 | CTOA12 | 206.1975 | 441.8973 | 36.31589 |
F25 | Best | Mean | Std | F26 | Best | Mean | Std |
TOA | 341.3034 | 378.1281 | 14.44046 | TOA | 205.5451 | 442.7682 | 35.61185 |
CTOA1 | 351.4246 | 377.3641 | 13.37185 | CTOA1 | 415.301 | 447.7863 | 11.94769 |
CTOA2 | 334.7624 | 379.2971 | 17.34367 | CTOA2 | 213.0823 | 443.4381 | 34.24711 |
CTOA3 | 334.7624 | 378.0456 | 15.14113 | CTOA3 | 213.0823 | 448.0654 | 13.32695 |
CTOA4 | 343.9612 | 374.4643 | 15.07159 | CTOA4 | 414.787 | 447.5854 | 13.33255 |
CTOA5 | 343.5602 | 376.8531 | 14.64781 | CTOA5 | 207.4477 | 444.2783 | 34.84123 |
CTOA6 | 340.2544 | 369.4993 | 17.96263 | CTOA6 | 208.472 | 438.1162 | 46.3816 |
CTOA7 | 340.5446 | 373.3726 | 15.10695 | CTOA7 | 206.8534 | 440.6653 | 47.70027 |
CTOA8 | 336.583 | 378.7096 | 15.68455 | CTOA8 | 423.6976 | 449.3942 | 11.74123 |
CTOA9 | 339.1641 | 374.3293 | 17.11287 | CTOA9 | 205.9741 | 427.3385 | 70.87132 |
CTOA10 | 333.7473 | 377.9546 | 16.54656 | CTOA10 | 415.857 | 448.6119 | 11.29372 |
CTOA11 | 341.0597 | 375.8586 | 17.06495 | CTOA11 | 415.0986 | 447.5982 | 12.38993 |
CTOA12 | 328.8846 | 375.7387 | 17.23426 | CTOA12 | 206.1975 | 441.8973 | 36.31589 |
F27 | Best | Mean | Std | F28 | Best | Mean | Std |
TOA | 1400.554 | 1814.028 | 139.5524 | TOA | 484.5942 | 1529.789 | 1583.094 |
CTOA1 | 1458.459 | 1836.968 | 124.295 | CTOA1 | 476.9386 | 2453.075 | 1720.385 |
CTOA2 | 1570.272 | 1816.282 | 125.6411 | CTOA2 | 469.3335 | 2204.546 | 1724.87 |
CTOA3 | 1570.272 | 1812.687 | 145.8124 | CTOA3 | 469.3335 | 2030.129 | 1737.381 |
CTOA4 | 1557.965 | 1832.559 | 138.9335 | CTOA4 | 468.339 | 1944.415 | 1698.713 |
CTOA5 | 1387.406 | 1,803.153 | 179.4981 | CTOA5 | 460.0553 | 1831.424 | 1694.643 |
CTOA6 | 1390.558 | 1823.212 | 133.4097 | CTOA6 | 458.6906 | 1876.84 | 1688.8 |
CTOA7 | 1502 | 1785.089 | 151.5179 | CTOA7 | 459.7052 | 2337.917 | 1749.708 |
CTOA8 | 1379.894 | 1815.98 | 153.4012 | CTOA8 | 464.123 | 2367.78 | 1710.853 |
CTOA9 | 1529.512 | 1751.109 | 119.9348 | CTOA9 | 468.146 | 1211.802 | 1404.408 |
CTOA10 | 1397.595 | 1796.916 | 136.5813 | CTOA10 | 473.0329 | 2249.055 | 1719.032 |
CTOA11 | 1489.443 | 1810.935 | 131.8909 | CTOA11 | 476.9507 | 2878.62 | 1600.359 |
CTOA12 | 1509.616 | 1802.984 | 130.2309 | CTOA12 | 469.7852 | 2023.272 | 1728.143 |
F1 | Best | Mean | Std | F2 | Best | Mean | Std |
TOA | 2139.399628 | 3252.464274 | 740.92 | TOA | 172,602,289.9 | 447,533,512.7 | 91,685,341.24 |
CTOA1 | 2398.073166 | 3474.836814 | 699.91 | CTOA1 | 231,713,011 | 447,264,632.7 | 102,561,566.8 |
CTOA2 | 2100.3414 | 3360.326236 | 801.93 | TOA2 | 261,140,623.7 | 414,096,007 | 104,531,429.2 |
TOA3 | 2100.3414 | 3508.182549 | 656.54 | CTOA3 | 261,140,623.7 | 419,300,467.4 | 101,483,596.7 |
CTOA4 | 2069.130245 | 3299.70168 | 721.25 | CTOA4 | 240,956,371.8 | 424,309,651.3 | 84,232,520.5 |
CTOA5 | 2141.346632 | 3331.353578 | 590.78 | TOA5 | 239,045,761.9 | 435,705,482 | 94,182,876.9 |
TOA6 | 2027.605969 | 3269.456482 | 620.89 | CTOA6 | 237,292,733.6 | 420,704,062.5 | 99,990,783.01 |
CTOA7 | 2405.229525 | 3320.014774 | 624.6 | CTOA7 | 260,680,854.6 | 4,62,800,15.8 | 104,976,598.2 |
CTOA8 | 2069.08308 | 3498.620606 | 642.46 | CTOA8 | 251,538,007.7 | 438,910,629 | 112,203,068.9 |
CTOA9 | 2118.171726 | 3134.233206 | 623.59 | CTOA9 | 208,046,895.7 | 41,886,4883.6 | 126,574,639 |
CTOA10 | 2333.059298 | 3533.930869 | 595.27 | CTOA10 | 228,647,833 | 412,418,208 | 95,269,405.78 |
CTOA11 | 2222.321066 | 3584.212646 | 671.87 | CTOA11 | 194,518,436.8 | 449,389,132.3 | 102,025,310.2 |
CTOA12 | 1880.082215 | 3422.023288 | 715.04 | CTOA12 | 254,967,863.6 | 431,936,549.3 | 101,136,645.7 |
F3 | Best | Mean | Std | F4 | Best | Mean | Std |
TOA | TOA | 242,942 | 344,677.4 | 50,758.4 | |||
CTOA1 | CTOA1 | 240,010.5 | 349,754.5 | 49,483.5 | |||
CTOA2 | CTOA2 | 262,230 | 342,400.7 | 40,655.6 | |||
CTOA3 | CTOA3 | 262,230 | 358,713.7 | 41,154.6 | |||
CTOA4 | CTOA4 | 271,398.6 | 353,731.1 | 41,958.2 | |||
CTOA5 | CTOA5 | 229,148.7 | 338,988.7 | 47,971.6 | |||
CTOA6 | CTOA6 | 206,415.8 | 337,985.6 | 43,048.8 | |||
CTOA7 | CTOA7 | 248,414.5 | 344,284.4 | 46,233.6 | |||
CTOA8 | CTOA8 | 287,827.3 | 357,776.7 | 41,517.3 | |||
CTOA9 | CTOA9 | 232,195.2 | 313,641.6 | 44,483.8 | |||
CTOA10 | CTOA10 | 264,029.4 | 351,039.7 | 37,753.6 | |||
CTOA11 | CTOA11 | 257,374.1 | 356,218.3 | 42,668.2 | |||
CTOA12 | CTOA12 | 235,024.8 | 342,845.2 | 47,596.1 | |||
F5 | Best | Mean | Std | F6 | Best | Mean | Std |
TOA | 887.7714 | 1681.186 | 412.4712 | TOA | 633.33 | 948.34 | 156.23 |
CTOA1 | 1048.166 | 1696.234 | 393.8469 | CTOA1 | 661.45 | 943.98 | 197.45 |
CTOA2 | 882.1098 | 1703.354 | 349.1738 | CTOA2 | 528.79 | 940.09 | 174.96 |
CTOA3 | 882.1098 | 1725.302 | 402.239 | CTOA3 | 528.79 | 917.19 | 152.48 |
CTOA4 | 844.8805 | 1676.628 | 442.7563 | CTOA4 | 634.26 | 933.76 | 179.8 |
CTOA5 | 978.8209 | 1654.513 | 376.7156 | CTOA5 | 639.19 | 965.19 | 190.5 |
CTOA6 | 886.7913 | 1644.643 | 361.2454 | CTOA6 | 598.06 | 957.4 | 202.32 |
CTOA7 | 820.2282 | 1605.73 | 402.9493 | CTOA7 | 598.28 | 961.24 | 198.54 |
CTOA8 | 816.0796 | 1712.45 | 428.1783 | CTOA8 | 654.96 | 889.16 | 130.46 |
CTOA9 | 722.4468 | 1405.416 | 382.5769 | CTOA9 | 771.9 | 1089.1 | 174 |
CTOA10 | 917.6314 | 1714.638 | 408.1695 | CTOA10 | 621.29 | 886.87 | 152.72 |
CTOA11 | 983.9259 | 1681.585 | 399.0413 | CTOA11 | 559.63 | 921.75 | 194.42 |
CTOA12 | 971.7307 | 1768.384 | 394.3836 | CTOA12 | 600.3 | 898.01 | 134.14 |
F7 | Best | Mean | Std | F8 | Best | Mean | Std |
TOA | 239.61 | 583.82 | 1,090.5 | TOA | 21.26847 | 21.3763 | 0.03656054 |
CTOA1 | 242.64 | 499.34 | 415.68 | CTOA1 | 21.26362 | 21.37266 | 0.03567635 |
CTOA2 | 212.37 | 469.75 | 595.15 | CTOA2 | 21.24667 | 21.3693 | 0.03756239 |
CTOA3 | 212.37 | 623.5 | 1,127.1 | CTOA3 | 21.24667 | 21.36901 | 0.03259256 |
CTOA4 | 198.39 | 483.64 | 578.59 | CTOA4 | 21.28035 | 21.36932 | 0.03458522 |
CTOA5 | 217.9 | 479.59 | 370.19 | CTOA5 | 21.24983 | 21.3707 | 0.03606908 |
CTOA6 | 198.89 | 449.21 | 396.67 | CTOA6 | 21.24562 | 21.37386 | 0.03700353 |
CTOA7 | 199.74 | 605.86 | 1,103.5 | CTOA7 | 21.27563 | 21.36101 | 0.03966604 |
CTOA8 | 232.86 | 422.03 | 335.35 | CTOA8 | 21.23908 | 21.3603 | 0.04661032 |
CTOA9 | 193.5 | 685.75 | 979.86 | CTOA9 | 21.22697 | 21.36859 | 0.04142569 |
CTOA10 | 219.16 | 450.11 | 316.9 | CTOA10 | 21.29148 | 21.37112 | 0.03301894 |
CTOA11 | 219.01 | 423.36 | 235.7 | CTOA11 | 21.25466 | 21.36941 | 0.03838689 |
CTOA12 | 213.15 | 440.99 | 429.49 | CTOA12 | 21.27145 | 21.3634 | 0.03841287 |
F9 | Best | Mean | Std | F10 | Best | Mean | Std |
TOA | 123.64 | 141.7 | 6.8574 | TOA | 1311.857 | 2810.311 | 484.0023 |
CTOA1 | 119.7 | 143.85 | 5.3254 | CTOA1 | 1650.991 | 2788.406 | 423.312 |
CTOA2 | 118.85 | 142.29 | 6.3419 | CTOA2 | 1730.756 | 2785.156 | 503.7041 |
CTOA3 | 118.85 | 140.61 | 9.8626 | CTOA3 | 1730.756 | 3018.903 | 491.3541 |
CTOA4 | 111.49 | 144.3 | 6.5471 | CTOA4 | 1724.17 | 2854.501 | 470.5136 |
CTOA5 | 127.04 | 143.38 | 5.7127 | CTOA5 | 1890.552 | 2915.824 | 504.7304 |
CTOA6 | 118.13 | 143.4 | 6.9413 | CTOA6 | 2064.768 | 2904.924 | 470.6114 |
CTOA7 | 121.7 | 143.94 | 6.1164 | CTOA7 | 1583.984 | 2738.125 | 468.6064 |
CTOA8 | 118.72 | 143.82 | 6.8683 | CTOA8 | 1882.227 | 2967.859 | 515.704 |
CTOA9 | 124.19 | 143.28 | 5.635 | CTOA9 | 1502.749 | 2381.599 | 437.7085 |
CTOA10 | 136.38 | 145.48 | 4.3317 | CTOA10 | 2038.667 | 2851.567 | 441.4562 |
CTOA11 | 120.92 | 142.1 | 7.6489 | CTOA11 | 1975.644 | 2810.702 | 537.6147 |
CTOA12 | 117.58 | 143.72 | 7.0724 | CTOA12 | 2000.156 | 2952.191 | 426.3003 |
F11 | Best | Mean | Std | F12 | Best | Mean | Std |
TOA | 782.093 | 1,344.245 | 347.54 | TOA | 1027.172 | 1445.814 | 215.9327 |
CTOA1 | 823.2128 | 1,072.799 | 166.715 | CTOA1 | 1056.322 | 1384.86 | 145.0878 |
CTOA2 | 947.2998 | 1,370.846 | 303.3031 | CTOA2 | 1056.929 | 1442.546 | 271.6762 |
CTOA3 | 947.2998 | 1,072.55 | 122.932 | CTOA3 | 1056.929 | 1384.999 | 145.0276 |
CTOA4 | 764.3616 | 1,122.971 | 232.9715 | CTOA4 | 1108.91 | 1413.493 | 187.1444 |
CTOA5 | 918.8009 | 1,320.505 | 291.6236 | CTOA5 | 1093.893 | 1482.733 | 223.3889 |
CTOA6 | 806.3396 | 1,235.863 | 283.4218 | CTOA6 | 990.1797 | 1530.761 | 281.9684 |
CTOA7 | 836.0226 | 1,213.874 | 212.3033 | CTOA7 | 998.6996 | 1445.851 | 165.3558 |
CTOA8 | 804.5107 | 1,047.444 | 131.7387 | CTOA8 | 1015.017 | 1,361.283 | 193.8797 |
CTOA9 | 1,009.143 | 1,316.869 | 173.9817 | CTOA9 | 1,135.893 | 1455.077 | 172.8708 |
CTOA10 | 801.5128 | 1,078.188 | 128.2543 | CTOA10 | 949.3587 | 1377.226 | 177.4148 |
CTOA11 | 750.7587 | 1,152.561 | 226.1175 | CTOA11 | 937.6393 | 1326.569 | 177.2872 |
CTOA12 | 905.1754 | 1,116.131 | 130.5852 | CTOA12 | 1,023.117 | 1435.691 | 162.1762 |
F13 | Best | Mean | Std | F14 | Best | Mean | Std |
TOA | 1,201.884 | 1,551.413 | 178.851 | TOA | 16,381.01 | 27,933.6 | 3,746.064 |
CTOA1 | 1269.838 | 1,501.91 | 105.0421 | CTOA1 | 19,002.43 | 27,672.33 | 3382.778 |
CTOA2 | 1242.54 | 1529.476 | 141.1283 | CTOA2 | 19,450.87 | 27,995.12 | 2962.188 |
CTOA3 | 1242.54 | 1496.165 | 132.7099 | CTOA3 | 19,450.87 | 26,247.03 | 3621.942 |
CTOA4 | 1176.155 | 1489.229 | 136.2595 | CTOA4 | 19,446.96 | 27,408.8 | 3225.933 |
CTOA5 | 1372.728 | 1542.419 | 105.7201 | CTOA5 | 19,164.59 | 28,846.3 | 2949.902 |
CTOA6 | 1302.928 | 1547.336 | 122.5809 | CTOA6 | 20,093.07 | 28,365.67 | 2982.52 |
CTOA7 | 1263.313 | 1567.934 | 162.486 | CTOA7 | 17,444.3 | 27,800.98 | 3620.782 |
CTOA8 | 1237.166 | 1492.269 | 136.3437 | CTOA8 | 17,636.99 | 25,612.59 | 4098.689 |
CTOA9 | 1285.352 | 1512.922 | 126.2399 | CTOA9 | 22,316.54 | 29,138.44 | 2218.411 |
CTOA10 | 1265.428 | 1522.556 | 116.2767 | CTOA10 | 20,580.74 | 28,074.75 | 2680.936 |
CTOA11 | 1215.8 | 1505.6 | 136.66 | CTOA11 | 19,816.96 | 28,290.68 | 3238.623 |
CTOA12 | 1291 | 1517.1 | 139.09 | CTOA12 | 17,287.1 | 27,601.03 | 3690.96 |
F15 | Best | Mean | Std | F16 | Best | Mean | Std |
TOA | 28,154.83 | 29,950.66 | 872.0593 | TOA | 3.738145 | 4.855429 | 0.327762 |
CTOA1 | 28,226.29 | 30,093.41 | 869.0388 | CTOA1 | 4.323785 | 4.876539 | 0.28861 |
CTOA2 | 26,822.43 | 29,932.09 | 937.1318 | CTOA2 | 3.776573 | 4.761512 | 0.330903 |
CTOA3 | 26,822.43 | 29,966.01 | 819.4143 | CTOA3 | 3.776573 | 4.850793 | 0.350139 |
CTOA4 | 27,966.95 | 30,001.04 | 799.4298 | CTOA4 | 3.935464 | 4.943971 | 0.2954 |
CTOA5 | 26,870.67 | 30,128.57 | 981.7578 | CTOA5 | 4.129593 | 4.861107 | 0.336834 |
CTOA6 | 28,107.15 | 30,101.49 | 894.0004 | CTOA6 | 3.627779 | 4.812167 | 0.366722 |
CTOA7 | 24,068.04 | 29,895.64 | 1,067.113 | CTOA7 | 3.968688 | 4.866329 | 0.311919 |
CTOA8 | 26,720.75 | 30,157.56 | 879.5838 | CTOA8 | 3.725901 | 4.88454 | 0.327247 |
CTOA9 | 27,247.85 | 29,808.67 | 857.5536 | CTOA9 | 4.18723 | 4.886854 | 0.271421 |
CTOA10 | 27,394.82 | 30,009.37 | 967.8268 | CTOA10 | 3.806503 | 4.814155 | 0.342405 |
CTOA11 | 27,973.91 | 30,121.8 | 823.9142 | CTOA11 | 3.945959 | 4.818225 | 0.342649 |
CTOA12 | 28,188.53 | 30,261.43 | 781.8707 | CTOA12 | 3.700745 | 4.832235 | 0.281363 |
F17 | Best | Mean | Std | F18 | Best | Mean | Std |
TOA | 1483.806 | 1855.596 | 178.1559 | TOA | 1598.452 | 1810.092 | 117.2306 |
CTOA1 | 1611.067 | 1851.803 | 140.7411 | CTOA1 | 1538.27 | 1853.757 | 153.6239 |
CTOA2 | 1578.284 | 1858.823 | 163.5562 | CTOA2 | 1496.278 | 1854.898 | 158.7919 |
CTOA3 | 1578.284 | 1914.236 | 175.5354 | CTOA3 | 1496.278 | 1865.568 | 143.2234 |
CTOA4 | 1534.363 | 1880.708 | 142.6621 | CTOA4 | 1532.831 | 1847.873 | 137.3685 |
CTOA5 | 1450.324 | 1905.645 | 191.0423 | CTOA5 | 1571.555 | 1856.824 | 137.2144 |
CTOA6 | 1466.723 | 1829.358 | 152.6456 | CTOA6 | 1609.036 | 1846.872 | 137.6364 |
CTOA7 | 1508.811 | 1895.095 | 203.4111 | CTOA7 | 1524.365 | 1889.037 | 158.8678 |
CTOA8 | 1492.227 | 1858.309 | 150.965 | CTOA8 | 1548.058 | 1854.012 | 161.8966 |
CTOA9 | 1419.244 | 1723.545 | 162.061 | CTOA9 | 1458.745 | 1781.356 | 141.7308 |
CTOA10 | 1470.953 | 1886.808 | 178.805 | CTOA10 | 1549.036 | 1869.344 | 140.7951 |
CTOA11 | 1584.51 | 1871.112 | 156.8525 | CTOA11 | 1473.288 | 1854.892 | 141.4038 |
CTOA12 | 1524.31 | 1849.215 | 171.8648 | CTOA12 | 1513.022 | 1843.106 | 154.3383 |
F19 | Best | Mean | Std | F20 | Best | Mean | Std |
TOA | 295.4663 | 1,299.743 | 940.6833 | TOA | 50 | 50 | |
CTOA1 | 306.0248 | 959.1571 | 490.4215 | CTOA1 | 50 | 50 | |
CTOA2 | 220.7732 | 1,210.53 | 776.8853 | CTOA2 | 50 | 50 | |
CTOA3 | 220.7751 | 1,456.507 | 1,122.251 | CTOA3 | 50 | 50 | |
CTOA4 | 263.9956 | 1,044.573 | 790.9504 | CTOA4 | 50 | 50 | |
CTOA5 | 278.2566 | 1,257.159 | 826.3161 | CTOA5 | 50 | 50 | |
CTOA6 | 353.118 | 1,505.636 | 1,163.484 | CTOA6 | 50 | 50 | |
CTOA7 | 340.1524 | 1,282.734 | 788.6813 | CTOA7 | 50 | 50 | |
CTOA8 | 303.4824 | 1,395.077 | 841.2369 | CTOA8 | 50 | 50 | |
CTOA9 | 290.4469 | 1,517.112 | 1,037.962 | CTOA9 | 50 | 50 | |
CTOA10 | 275.5873 | 1,431.942 | 917.4171 | CTOA10 | 50 | 50 | |
CTOA11 | 287.2933 | 774.3478 | 437.001 | CTOA11 | 50 | 50 | |
CTOA12 | 291.55 | 1,447.6 | 1053.9 | CTOA12 | 50 | 50 | |
F21 | Best | Mean | Std | F22 | Best | Mean | Std |
TOA | 866.14 | 2428.9 | 1016.9 | TOA | 20,193.2 | 28,305.4 | 3572.9 |
CTOA1 | 829 | 2495.7 | 944.19 | CTOA1 | 18,665.6 | 27,128.7 | 3883.5 |
CTOA2 | 887.97 | 2447.2 | 945.41 | CTOA2 | 20,142.8 | 27,866.3 | 4040.5 |
CTOA3 | 887.97 | 2362.1 | 947.87 | CTOA3 | 20,142.8 | 24,239.8 | 3884.5 |
CTOA4 | 860.3 | 2708.4 | 817.23 | CTOA4 | 19,331.5 | 26,564.5 | 2984.9 |
CTOA5 | 995.5 | 2396.4 | 1025.5 | CTOA5 | 18,828.2 | 26,778.3 | 4172.5 |
CTOA6 | 1009.5 | 2592 | 1143.4 | CTOA6 | 19,798.7 | 28,077.5 | 3468.8 |
CTOA7 | 852.06 | 2316.4 | 736.24 | CTOA7 | 19,292.1 | 27,771 | 3565.4 |
CTOA8 | 898.29 | 2173.7 | 776.43 | CTOA8 | 18,855 | 26,067 | 4050.5 |
CTOA9 | 920.94 | 2032.5 | 1389.2 | CTOA9 | 19,674.5 | 28,475.1 | 3657.9 |
CTOA10 | 799.18 | 2255 | 1035.1 | CTOA10 | 18,910.8 | 25,546.6 | 3911.2 |
CTOA11 | 905.3 | 2426.5 | 836.24 | CTOA11 | 19,931.1 | 28,200.4 | 3468.5 |
CTOA12 | 875.31 | 2320.3 | 1025.7 | CTOA12 | 18,541.1 | 27,376.9 | 3896.5 |
F23 | Best | Mean | Std | F24 | Best | Mean | Std |
TOA | 29,767 | 31,678.9 | 967.48 | TOA | 515.63 | 562.26 | 23.613 |
CTOA1 | 29,746.4 | 31,711.7 | 908.48 | CTOA1 | 516.52 | 563.41 | 21.138 |
CTOA2 | 24,342.9 | 31,659.2 | 1,518.7 | CTOA2 | 526.9 | 567.66 | 26.498 |
CTOA3 | 24,342.9 | 31,879.5 | 1,183.1 | CTOA3 | 526.9 | 569.32 | 24.676 |
CTOA4 | 29,565.3 | 32,058.3 | 921.15 | CTOA4 | 523.82 | 564.63 | 23.689 |
CTOA5 | 28,958 | 31,582.9 | 875.01 | CTOA5 | 521.75 | 568.03 | 25.61 |
CTOA6 | 29,072.8 | 31,584.3 | 950.12 | CTOA6 | 529.72 | 570.46 | 22.514 |
CTOA7 | 29,211 | 31,761.7 | 1,002 | CTOA7 | 515.08 | 562.81 | 23.823 |
CTOA8 | 29,895.2 | 31,945.3 | 1,072.6 | CTOA8 | 531.98 | 565.37 | 19.642 |
CTOA9 | 28,957.1 | 31,770.4 | 1,246.4 | CTOA9 | 496.74 | 565.53 | 25.123 |
CTOA10 | 29,750.9 | 31,847.3 | 1,087.7 | CTOA10 | 515.16 | 562.28 | 24.828 |
CTOA11 | 28,734.8 | 31,592.8 | 1,189.2 | CTOA11 | 520.65 | 566.94 | 24.266 |
CTOA12 | 29,235 | 31,907.3 | 1,038.3 | CTOA12 | 527.5 | 566.78 | 24.079 |
F25 | Best | Mean | Std | F26 | Best | Mean | Std |
TOA | 570.97 | 616.03 | 25.28 | TOA | 605.64 | 653.37 | 19.974 |
CTOA1 | 557.81 | 607.77 | 29.975 | CTOA1 | 596.71 | 649.23 | 23.78 |
CTOA2 | 544.22 | 604.04 | 27.977 | CTOA2 | 585.99 | 653.11 | 24.213 |
CTOA3 | 544.22 | 622.09 | 27.573 | CTOA3 | 585.99 | 931.14 | 418.44 |
CTOA4 | 551.65 | 616.61 | 31.779 | CTOA4 | 598.6 | 652.09 | 23.355 |
CTOA5 | 555.28 | 615.85 | 33.21 | CTOA5 | 590.85 | 658.15 | 20.685 |
CTOA6 | 539.27 | 611.22 | 32.751 | CTOA6 | 592.76 | 651.35 | 22.915 |
CTOA7 | 555.95 | 616.08 | 29.62 | CTOA7 | 588.64 | 648.27 | 25.268 |
CTOA8 | 558.65 | 609.97 | 29.814 | CTOA8 | 229.31 | 642.92 | 62.589 |
CTOA9 | 552.58 | 610.49 | 31.12 | CTOA9 | 600.25 | 653.61 | 22.443 |
CTOA10 | 557.08 | 615.63 | 32.068 | CTOA10 | 231.12 | 654.98 | 112.07 |
CTOA11 | 567.22 | 610.7 | 27.697 | CTOA11 | 585.69 | 651.74 | 23.476 |
CTOA12 | 551.37 | 609.59 | 29.49 | CTOA12 | 604.05 | 653.97 | 20.052 |
F27 | Best | Mean | Std | F28 | Best | Mean | Std |
TOA | 3392.796 | 3919.681 | 231.5979 | TOA | 4201.435 | 7311.129 | 1744.548 |
CTOA1 | 3259.685 | 3917.855 | 262.1164 | CTOA1 | 4193.543 | 6951.326 | 1508.54 |
CTOA2 | 3259.548 | 3893.783 | 276.7739 | CTOA2 | 3815.402 | 6805.725 | 1645.86 |
CTOA3 | 3259.548 | 3861.78 | 254.4354 | CTOA3 | 3815.402 | 6716.805 | 2079.802 |
CTOA4 | 3215.907 | 3854.504 | 303.3637 | CTOA4 | 4109.336 | 6851.335 | 1741.201 |
CTOA5 | 3275.907 | 3864.261 | 268.2263 | CTOA5 | 4198.841 | 7186.764 | 1556.756 |
CTOA6 | 3235.728 | 3889.609 | 283.8143 | CTOA6 | 4169.432 | 6762.418 | 1446.997 |
CTOA7 | 3246.926 | 3921.525 | 261.544 | CTOA7 | 4358.581 | 6985.035 | 1341.934 |
CTOA8 | 3378.879 | 3882.204 | 271.7141 | CTOA8 | 4098.158 | 7107.149 | 2005.808 |
CTOA9 | 3161.953 | 3874.175 | 241.2633 | CTOA9 | 4499.389 | 7435.809 | 2229.463 |
CTOA10 | 3285.253 | 3901.605 | 267.3331 | CTOA10 | 4229.426 | 6891.634 | 1983.091 |
CTOA11 | 3359.521 | 3894.444 | 250.7726 | CTOA11 | 4125.303 | 6868.33 | 1407.036 |
CTOA12 | 3401.57 | 3855.544 | 257.0391 | CTOA12 | 4050.620 | 6802.455 | 1873.949 |
Algorithm | Friedman Ranking | Final Ranking |
---|---|---|
CTOA9 | 4.3 | 1 |
TOA | 4.67 | 2 |
CTOA10 | 6.00 | 3 |
CTOA8 | 6.00 | 4 |
CTOA5 | 6.33 | 5 |
CTOA11 | 6.67 | 6 |
CTOA3 | 7.17 | 7 |
CTOA4 | 7.17 | 8 |
CTOA6 | 7.83 | 9 |
CTOA7 | 8.17 | 10 |
CTOA1 | 8.3 | 11 |
CTOA2 | 8.67 | 12 |
CTOA12 | 9.67 | 13 |
Algorithm | Friedman Ranking | Final Ranking |
---|---|---|
CTOA9 | 2.67 | 1 |
CTOA5 | 3.33 | 2 |
CTOA6 | 4.67 | 3 |
CTOA7 | 4.67 | 4 |
CTOA1 | 6.33 | 5 |
TOA | 6.67 | 6 |
CTOA2 | 6.83 | 7 |
CTOA10 | 7.33 | 8 |
CTOA11 | 8.50 | 9 |
CTOA12 | 8.50 | 10 |
CTOA8 | 9.67 | 11 |
CTOA3 | 10.17 | 12 |
CTOA4 | 11.67 | 13 |
Algorithm | Friedman Ranking | Final Ranking |
---|---|---|
CTOA6 | 5.00 | 1 |
CTOA1 | 5.00 | 2 |
CTOA9 | 5.33 | 3 |
TOA | 5.67 | 4 |
CTOA10 | 6.17 | 5 |
CTOA4 | 6.33 | 6 |
CTOA2 | 6.50 | 7 |
CTOA12 | 6.50 | 8 |
CTOA3 | 7 | 9 |
CTOA11 | 7.166666667 | 10 |
CTOA5 | 7.333333333 | 11 |
CTOA8 | 8.166666667 | 12 |
CTOA7 | 8.5 | 13 |
Algorithm | Compared Algorithm | p Value | Result |
---|---|---|---|
CTOA9 | TOA | 0.0339 | 1 |
CTOA1 | 0.0211 | 1 | |
CTOA2 | 0.0375 | 1 | |
CTOA3 | 0.0595 | 0 | |
CTOA4 | 0.0466 | 1 | |
CTOA5 | 0.0168 | 1 | |
CTOA6 | 0.0457 | 1 | |
CTOA7 | 0.0516 | 0 | |
CTOA8 | 0.4281 | 1 | |
CTOA10 | 0.0428 | 1 | |
CTOA11 | 0.0357 | 1 | |
CTOA12 | 0.2790 | 1 |
Algorithm | Parameter | Description |
---|---|---|
CTOA9 | = 50 | seed growth cycle |
GA [3] | = 0.005 | mutation rate |
= 0.7 | crossover rate | |
PSO [2] | = = 1 | learning factor |
w = 0.9 | weight | |
= 6 | maximum velocity limit | |
ACO [7] | = 0.2 | pheromone volatilization speed |
SFLA [8] | q = 2 | number of parents |
= 3 | number of offsprings | |
= 5 | maximum number of iterations | |
= 2 | step size | |
= 5 | number of memeplexes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.-Y.; Shao, A.; Pan, J.-S. CTOA: Toward a Chaotic-Based Tumbleweed Optimization Algorithm. Mathematics 2023, 11, 2339. https://doi.org/10.3390/math11102339
Wu T-Y, Shao A, Pan J-S. CTOA: Toward a Chaotic-Based Tumbleweed Optimization Algorithm. Mathematics. 2023; 11(10):2339. https://doi.org/10.3390/math11102339
Chicago/Turabian StyleWu, Tsu-Yang, Ankang Shao, and Jeng-Shyang Pan. 2023. "CTOA: Toward a Chaotic-Based Tumbleweed Optimization Algorithm" Mathematics 11, no. 10: 2339. https://doi.org/10.3390/math11102339
APA StyleWu, T. -Y., Shao, A., & Pan, J. -S. (2023). CTOA: Toward a Chaotic-Based Tumbleweed Optimization Algorithm. Mathematics, 11(10), 2339. https://doi.org/10.3390/math11102339