Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse
Abstract
:1. Introduction
2. Problem Description
- AGV runs at a constant speed without considering the influence of full load/no-load and turning;
- No additional loss time for AGV operation regardless of AGV starting, braking, forking, and so on;
- Regardless of the size difference of AGV, the two types of AGV all occupy one grid;
- AGV charging is not considered;
- The operating environment is a static network, dynamic situations such as conflicts between AGVs and sudden obstacles are not considered.
3. Mathematical Modeling
3.1. Path Planning Model
3.2. Task Assignment Model
4. Solution Algorithms
4.1. A-Star Algorithm for Path Planning Model
Algorithm 1. Framework for recurring A-star algorithm |
|
4.2. Genetic Algorithm for Task Assignment Model
4.2.1. Encoding Operation
4.2.2. Population Initialization
4.2.3. Fitness Function
4.2.4. Selection Operation
4.2.5. Crossover Operation
4.2.6. Mutation Operation
4.2.7. Recombination Operation
5. Analysis of Case Study
5.1. Parameter Setting
5.2. Analysis of Results
- (1)
- Path planning results
- (2)
- Results of task assignment
- (3)
- Marginal cost analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, W.; Guo, S.; Song, T.; Li, Y. Analysis of Multi-AGVs Management System and Key Issues: A Review. Comput. Model. Eng. Sci. 2022, 131, 1197–1227. [Google Scholar] [CrossRef]
- Klei, C.M.; Kim, J. AGV dispatching. Int. J. Prod. Res. 1996, 34, 95–110. [Google Scholar] [CrossRef]
- Co, C.G.; Tanchoco, J.M.A. A Review of Research on AGVS Vehicle Management. Eng. Costs Prod. Econ. 1991, 21, 35–42. [Google Scholar] [CrossRef]
- Zhou, B.; He, Z. A novel hybrid-load AGV for JIT-based sustainable material handling scheduling with time window in mixed-model assembly line. Int. J. Prod. Res. 2023, 61, 796–817. [Google Scholar] [CrossRef]
- Aziez, I.; Côté, J.-F.; Coelho, L.C. Fleet sizing and routing of healthcare automated guided vehicles. Transp. Res. Part E Logist. Transp. Rev. 2022, 161, 19. [Google Scholar] [CrossRef]
- Hu, H.; Chen, X.; Wang, T.; Zhang, Y. A three-stage decomposition method for the joint vehicle dispatching and storage allocation problem in automated container terminals. Comput. Ind. Eng. 2019, 129, 90–101. [Google Scholar] [CrossRef]
- Tang, H.; Cheng, X.; Jiang, W.; Chen, S. Research on Equipment Configuration Optimization of AGV Unmanned Warehouse. IEEE Access 2021, 9, 47946–47959. [Google Scholar] [CrossRef]
- Xu, W.; Guo, S.; Li, X.; Guo, C.; Wu, R.; Peng, Z. A Dynamic Scheduling Method for Logistics Tasks Oriented to Intelligent Manufacturing Workshop. Math. Probl. Eng. 2019, 2019, 7237459. [Google Scholar] [CrossRef]
- Udhayakumar, P.; Kumanan, S. Task Scheduling of AGV in FMS Using Non-Traditional Optimization Techniques. Int. J. Simul. Model. 2010, 9, 28–39. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, S.; Su, Z.; Guo, D. Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PLoS ONE 2019, 14, e0226161. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; Yap, H.J.; Musa, S.N.; Tahriri, F.; Dawal, S.Z.M. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization. PLoS ONE 2017, 12, e0169817. [Google Scholar] [CrossRef]
- Li, J.; Cheng, W.; Lai, K.K.; Ram, B. Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging. Mathematics 2022, 10, 3417. [Google Scholar] [CrossRef]
- Liang, K.; Zhou, L.; Yang, J.; Liu, H.; Li, Y.; Jing, F.; Shan, M.; Yang, J. Research on a Dynamic Task Update Assignment Strategy Based on a “Parts to Picker” Picking System. Mathematics 2023, 11, 1684. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Rostami, S.M.H.; Sangaiah, A.K.; Wang, J.; Liu, X. Obstacle avoidance of mobile robots using modified artificial potential field algorithm. Eurasip J. Wirel. Commun. Netw. 2019, 2019, 70. [Google Scholar] [CrossRef]
- Szczepanski, R.; Bereit, A.; Tarczewski, T. Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by Augmented Reality. Energies 2021, 14, 6642. [Google Scholar] [CrossRef]
- Matoui, F.; Boussaid, B.; Metoui, B.; Abdelkrim, M.N. Contribution to the path planning of a multi-robot system: Centralized architecture. Intell. Serv. Robot. 2020, 13, 147–158. [Google Scholar] [CrossRef]
- Kim, C.W.; Tanchoco, J.M.A. Conflict-Free Shortest-Time Bidirectional AGV Routeing. Int. J. Prod. Res. 1991, 29, 2377–2391. [Google Scholar] [CrossRef]
- Chiddarwar, S.S.; Babu, N.R. Conflict free coordinated path planning for multiple robots using a dynamic path modification sequence. Robot. Auton. Syst. 2011, 59, 508–518. [Google Scholar] [CrossRef]
- Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210. [Google Scholar] [CrossRef]
- Fransen, K.; van Eekelen, J. Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic. Int. J. Prod. Res. 2021, 61, 707–725. [Google Scholar] [CrossRef]
- Faridi, A.Q.; Sharma, S.; Shukla, A.; Tiwari, R.; Dhar, J. Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intell. Serv. Robot. 2018, 11, 171–186. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Fu, F.; Su, Z. Multi-AGV Path Planning for Indoor Factory by Using Prioritized Planning and Improved Ant Algorithm. J. Eng. Technol. Sci. 2018, 50, 534–547. [Google Scholar] [CrossRef]
- Subbaiah, K.V.; Rao, M.N.; Rao, K.N. Scheduling of AGVs and machines in FMS with makespan criteria using sheep flock heredity algorithm. Int. J. Phys. Sci. 2009, 4, 139–148. [Google Scholar]
- Zhong, M.; Yang, Y.; Dessouky, Y.; Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated container terminals. Comput. Ind. Eng. 2020, 142, 11. [Google Scholar] [CrossRef]
- Gao, H.; Su, H.; Cai, Y.; Wu, R.; Hao, Z.; Xu, Y.; Wu, W.; Wang, J.; Li, Z.; Kan, Z. Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections. Sci. China Inf. Sci. 2021, 64, 172207. [Google Scholar] [CrossRef]
- Gao, H.; Qin, Y.; Hu, C.; Liu, Y.; Li, K. An Interacting Multiple Model for Trajectory Prediction of Intelligent Vehicles in Typical Road Traffic Scenario. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, N.N.; Batta, R.; Karwan, M.H. Developing Conflict-Free Routes for Automated Guided Vehicles. Oper. Res. 1993, 41, 1077–1090. [Google Scholar] [CrossRef]
- Desaulniers, G.; Langevin, A.; Riopel, D.; Villeneuve, B. Dispatching and conflict-free routing of automated guided vehicles: An exact approach. Int. J. Flex. Manuf. Syst. 2003, 15, 309–331. [Google Scholar] [CrossRef]
- Murakami, K. Time-space network model and MILP formulation of the conflict-free routing problem of a capacitated AGV system. Comput. Ind. Eng. 2020, 141, 106270. [Google Scholar] [CrossRef]
- Nishida, K.; Nishi, T. Dynamic Optimization of Conflict-Free Routing of Automated Guided Vehicles for Just-in-Time Delivery. IEEE Trans. Autom. Sci. Eng. 2022, 1–16. [Google Scholar] [CrossRef]
- Nishi, T.; Hiranaka, Y.; Grossmann, I.E. A bilevel decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles. Comput. Oper. Res. 2011, 38, 876–888. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, M.; Dessouky, Y.; Postolache, O. An integrated scheduling method for AGV routing in automated container terminals. Comput. Ind. Eng. 2018, 126, 482–493. [Google Scholar] [CrossRef]
- Ji, S.; Luan, D.; Chen, Z.; Guo, D. Integrated scheduling in automated container terminals considering AGV conflict-free routing. Transp. Lett. Int. J. Transp. Res. 2021, 13, 501–513. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Xu, L. Multi-AGV dispatching and routing problem based on a three-stage decomposition method. Math. Biosci. Eng. 2020, 17, 5150–5172. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Y.; Dong, L. A Three Stage Optimal Scheduling Algorithm for AGV Route Planning Considering Collision Avoidance under Speed Control Strategy. Mathematics 2023, 11, 138. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chiang, P.J.; Fei, J.C.-C.; Liu, J.S. A comparative study of implementing fast marching method and A* search for mobile robot path planning in grid environment: Effect of map resolution. In Proceedings of the 2007 IEEE Workshop on Advanced Robotics and Its Social Impacts, Hsinchu, Taiwan, 9–11 December 2007; pp. 1–6. [Google Scholar] [CrossRef]
Optimization Objective | Solution Algorithms | Other Factors | ||||||
---|---|---|---|---|---|---|---|---|
Minimum Completion time | Minimum Number of AGVs | Maximum AGV Utilization | Genetic Algorithm | Ant Colony Algorithm | Particle Swarm Optimization | Charging | Layout | |
Tang et al. [7] | √ | —— | —— | √ | —— | —— | —— | √ |
Xu et al. [8] | √ | √ | —— | √ | √ | —— | —— | |
Udhayakumar et al. [9] | √ | —— | √ | √ | √ | —— | —— | —— |
Liu et al. [10] | √ | √ | —— | √ | —— | —— | √ | —— |
Mousavi et al. [11] | √ | √ | —— | √ | —— | √ | √ | —— |
Li et al. [12] | √ | —— | —— | √ | —— | —— | √ | —— |
Liang et al. [13] | √ | —— | —— | √ | —— | —— | —— |
Symbol | Description |
---|---|
Set | |
Set of passable grids | |
Set of obstacle grids | |
Parameter | |
Variable | |
consecutively and 0 otherwise. |
Symbol | Description |
---|---|
Set | |
Set of tasks | |
Set of AGVs | |
Parameter | |
Pickup grid number of task m | |
Delivery grid number of task m | |
, it means the horizontal handling task | |
Generation time of task m | |
Deadline of task m | |
, it means forklift AGV | |
Starting grid number of AGV k | |
Running speed of AGV k, related to the type of AGV, m/s | |
, obtained from the path planning model, m | |
Power consumption factor of AGV k, related to the type of AGV, kWh/(s·tons) | |
Weight of AGV, related to AGV type, tons | |
Weight of goods, tons | |
Path distance of AGV k completing all assigned tasks, m | |
Time for AGV k to complete the assigned task, s | |
Variable | |
Decision variables. Takes 1 if AGV k performs task m and task m’ consecutively and 0 otherwise | |
Decision variables. Takes 1 if task m is executed using AGV k and 0 otherwise. |
Task Number | Task Type | Pickup Grid | Delivery Grid | Task Generation time | Task Deadline |
---|---|---|---|---|---|
1 | Horizontal handling task | 1 | 510 | 0:06:14 | 0:08:14 |
2 | Horizontal handling task | 7 | 825 | 0:06:14 | 0:08:14 |
3 | Vertical handling task | 13 | 963 | 0:08:06 | 0:10:06 |
4 | Horizontal handling task | 19 | 371 | 0:08:59 | 0:10:59 |
5 | Vertical handling task | 25 | 979 | 0:08:59 | 0:10:59 |
… | … | … | … | … | … |
898 | Horizontal handling task | 32 | 1580 | 23:23:47 | 23:27:47 |
899 | Vertical handling task | 25 | 2325 | 23:23:47 | 23:27:47 |
900 | Horizontal handling task | 49 | 1448 | 23:25:47 | 23:29:47 |
AGV Number | AGV Type | Starting Grid | Running Speed (m/s) | Weight (t) | Power Consumption Factor (Wh/m·t) |
---|---|---|---|---|---|
1 | forklift AGV | 2103 | 1.2 | 0.755 | 0.102 |
2 | forklift AGV | 1703 | 1.2 | 0.755 | 0.102 |
3 | forklift AGV | 1253 | 1.2 | 0.755 | 0.102 |
4 | latent AGV | 853 | 1.5 | 0.165 | 0.043 |
5 | latent AGV | 453 | 1.5 | 0.165 | 0.043 |
Distance | Grid1 | Grid2 | Grid3 | Grid4 | Grid5 | Grid6 | Grid7 | Grid8 | Grid9 | Grid10 | … | Grid2500 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grid1 | 0 | 1 | 2 | 3 | Inf | Inf | 6.8 | 7.8 | Inf | Inf | … | 86 |
Grid2 | 1 | 0 | 1 | 2 | Inf | Inf | 5.8 | 6.8 | Inf | Inf | … | 83.2 |
Grid3 | 2 | 1 | 0 | 1 | Inf | Inf | 4.8 | 5.8 | Inf | Inf | … | 82.2 |
Grid4 | 3 | 2 | 1 | 0 | Inf | Inf | 3.8 | 4.8 | Inf | Inf | … | 81.2 |
Grid5 | Inf | Inf | Inf | Inf | 0 | Inf | Inf | Inf | Inf | Inf | … | Inf |
Grid6 | Inf | Inf | Inf | Inf | Inf | 0 | Inf | Inf | Inf | Inf | … | Inf |
Grid7 | 6.8 | 5.8 | 4.8 | 3.8 | Inf | Inf | 0 | 1 | Inf | Inf | … | 78.2 |
Grid8 | 7.8 | 6.8 | 5.8 | 4.8 | Inf | Inf | 1 | 0 | Inf | Inf | … | 77.2 |
Grid9 | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | 0 | Inf | … | Inf |
Grid10 | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | Inf | 0 | … | Inf |
… | … | … | … | … | … | … | … | … | … | … | … | … |
Grid2500 | 86 | 83.2 | 82.2 | 81.2 | Inf | Inf | 78.2 | 77.2 | Inf | Inf | … | 0 |
Task | Multi-Type AGV Task Assignment Model | Multi-AGV Task Assignment Model without Considering Equation (18) |
---|---|---|
Task 1 | AGV5 | AGV4 |
Task 2 | AGV5 | AGV5 |
Task 3 | AGV3 | AGV4 |
Task 4 | AGV5 | AGV4 |
Task 5 | AGV3 | AGV4 |
Task 6 | AGV5 | AGV4 |
Task 7 | AGV5 | AGV4 |
Task 8 | AGV4 | AGV4 |
Task 9 | AGV5 | AGV5 |
Task 10 | AGV4 | AGV4 |
Task Completion Time (h) | 0.5839 | 0.5839 |
Total Energy Consumption (KW·h) | 0.0522 | 0.0372 |
Task Number | Assigned AGV | Task Generation Time | Task Deadline | AGV Arrival Time | Task Start Time | Task End Time |
---|---|---|---|---|---|---|
1 | 5 | 0.1039 | 0.1372 | 0.0020 | 0.1039 | 0.1066 |
2 | 4 | 0.1039 | 0.1372 | 0.0034 | 0.1039 | 0.1094 |
3 | 3 | 0.1350 | 0.1683 | 0.0070 | 0.1350 | 0.1394 |
4 | 3 | 0.1497 | 0.1831 | 0.1446 | 0.1497 | 0.1515 |
5 | 3 | 0.1497 | 0.1831 | 0.1537 | 0.1537 | 0.1584 |
… | … | … | … | … | … | … |
898 | 5 | 23.3964 | 23.4631 | 23.3217 | 23.3964 | 23.4023 |
899 | 2 | 23.3964 | 23.4631 | 22.8391 | 23.3964 | 23.4135 |
900 | 5 | 23.4297 | 23.4964 | 23.4103 | 23.4297 | 23.4475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Zhang, X.; Wang, P. Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse. Mathematics 2023, 11, 2802. https://doi.org/10.3390/math11132802
Jiang Z, Zhang X, Wang P. Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse. Mathematics. 2023; 11(13):2802. https://doi.org/10.3390/math11132802
Chicago/Turabian StyleJiang, Zhuoling, Xiaodong Zhang, and Pei Wang. 2023. "Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse" Mathematics 11, no. 13: 2802. https://doi.org/10.3390/math11132802
APA StyleJiang, Z., Zhang, X., & Wang, P. (2023). Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse. Mathematics, 11(13), 2802. https://doi.org/10.3390/math11132802