Adaptive L0 Regularization for Sparse Support Vector Regression
Abstract
:1. Introduction
2. Fundamental Concepts
2.1. SVR
2.2. L0 Penalty
3. Adaptive L0 Support Vector Regression
3.1. Estimation Procedure
- Step 1: Obtain an initial estimate for the coefficients of the function using any method you like (one example is the OLS approach or the classic SVR approach).
- Step 2: At iteration t, where , calculate and and solve the optimization in (10) to obtain .
- Step 3: Compare whether the distance between and is less than the cutoff point . If yes, stop, otherwise, increase t by one and repeat Step 2.
3.2. Alternative Approach to Adaptive L0 SVR
4. Numerical Experiments
4.1. Simulated Data
- Model 1: .
- Model 2: .
- Model 3: (p) .
4.2. Real Data
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Cortes, C.; Vapnik, V. Support Vector Network. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wang, X.X.; Chen, S.; Lowe, D.; Harris, C.J. Sparse Support Vector Regression based on orthogonal forward selection for the generalized kernel method. Neurocomputing 2006, 70, 462–474. [Google Scholar] [CrossRef] [Green Version]
- Ertin, E.; Potter, L.C. A method for sparse vector regression. In Intelligent Computing: Theory and Applications III; SPIE: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the LASSO. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Frommlet, F.; Nuel, G. An adaptive ridge procedure for L0 regularization. PLoS ONE 2016, 11, e0148620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, D.; Wien, F.T. Support Vector Machines. The Interface to Libsvm in Package, e1071. R News 2015, 1, 597. [Google Scholar]
- Karatzoglou, A.; Smola, A.; Hornik, K. Kernlab: Kernel-Based Machine Learning Lab. R Package Version 0.9-32. 2023. Available online: https://CRAN.R-project.org/package=kernlab (accessed on 15 May 2023).
- Li, Q.; Li, X.; Ba, W. Sparse least squares support vector machine with l0-norm in primal space. In Proceedings of the International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2778–2783. [Google Scholar]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2019. [Google Scholar]
- Yeh, I.-C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Tüfekci, P. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 2014, 60, 126–140. [Google Scholar] [CrossRef]
- Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T.; Reis, J. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 2009, 47, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; King, I.; Lyu, M.R. Direct zero-norm optimization for feature selection. In Proceedings of the Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 845–850. [Google Scholar]
- Smallman, L.; Underwood, W.; Artemiou, A. Simple Poisson PCA: An algorithm for (sparse) feature extraction with simultaneous dimension determination. Comput. Stat. 2020, 35, 559–577. [Google Scholar] [CrossRef] [Green Version]
True Positives | True Negatives | |||||||
---|---|---|---|---|---|---|---|---|
Model | SVR-AL0 | SVR-AAL0 | OLS-AL0 | SVR-AL0 | SVR-AAL0 | OLS-AL0 | ||
I | 20 | 0 | 1.0000 | 1.0000 | 0.9990 | 0.9953 | 0.9948 | 1.0000 |
0.5 | 1.0000 | 1.0000 | 1.0000 | 0.9650 | 0.9593 | 1.0000 | ||
0.8 | 1.0000 | 1.0000 | 1.0000 | 0.8528 | 0.8455 | 1.0000 | ||
II | 24 | 0 | 1.0000 | 0.9988 | 1.0000 | 0.9465 | 0.9384 | 1.0000 |
0.5 | 0.9996 | 0.9988 | 1.0000 | 0.8469 | 0.8389 | 1.0000 | ||
0.8 | 1.0000 | 0.9956 | 1.0000 | 0.8503 | 0.5343 | 1.0000 | ||
III (p) | 100 | 0 | 0.7536 | 0.7574 | 0.7227 | 0.9140 | 0.9151 | 0.7562 |
0.5 | 0.9349 | 0.9485 | 0.7397 | 0.9764 | 0.9821 | 0.7470 | ||
0.8 | 0.9876 | 0.9894 | 0.7197 | 0.9874 | 0.9861 | 0.7514 | ||
250 | 0 | 0.7437 | 0.8806 | 0.9347 | 0.8806 | 0.8839 | 0.8332 | |
0.5 | 0.9380 | 0.9572 | 0.9971 | 0.9572 | 0.9604 | 0.8877 | ||
0.8 | 0.9958 | 0.9864 | 0.9993 | 0.9864 | 0.9871 | 0.9161 | ||
500 | 0 | 0.7125 | 0.7138 | 0.7005 | 0.8903 | 0.8927 | 0.9605 | |
0.5 | 0.9350 | 0.9473 | 0.9777 | 0.9561 | 0.9495 | 0.9910 | ||
0.8 | 0.9955 | 0.9963 | 0.9987 | 0.9852 | 0.9838 | 0.9992 | ||
1000 | 0 | 0.5969 | 0.9135 | 0.8029 | 0.9135 | 0.9166 | 0.8650 | |
0.5 | 0.9276 | 0.9599 | 0.9935 | 0.9599 | 0.9530 | 0.9123 | ||
0.8 | 0.9946 | 0.9843 | 0.9993 | 0.9844 | 0.9843 | 0.9815 |
Predictors | ||||||||
---|---|---|---|---|---|---|---|---|
Method | Cement | Slag | Ash | Water | Superplasticizer | Coarse Aggr. | Fine Aggr. | Age |
SVR | 0.75531 | 0.20537 | −0.12401 | −0.05053 | 0.01467 | −0.08858 | −0.11367 | 0.59027 |
SVR-AL0 | 0.77107 | 0.20580 | 0 | 0 | 0 | 0 | 0 | 0.60258 |
SVR-AAL0 (c = 1) | 0.77046 | 0.20941 | 0 | 0 | 0 | 0 | 0 | 0.60211 |
SVR-AAL0 (c = 0.1) | 0.77380 | 0.18856 | 0.00004 | 0 | 0 | 0 | 0.00001 | 0.60471 |
Predictors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Response | Method | Fixed Acid | Volatile Acid | Citric Acid | Residual Sugar | Chlorides | Free Sulfur Dioxide | Total Sulfur Dioxide | Density | pH | Sulphates | Alcohol |
SVR | 0.00915 | −0.01096 | 0.00351 | 0.05674 | −0.00357 | 0.23292 | 0.96777 | −0.00009 | −0.00110 | 0.00379 | 0.07556 | |
Red | SVR-AL0 | 0.00010 | −0.00024 | 0 | 0.05345 | 0 | 0.23297 | 0.96818 | 0 | 0 | 0 | 0.07414 |
Wine | SVR-AAL0 () | 0.00915 | −0.01096 | 0.00351 | 0.05674 | −0.00357 | 0.23292 | 0.96777 | −0.00009 | −0.00110 | 0.00379 | 0.07556 |
SVR-AAL0 () | 0 | 0 | 0 | 0 | 0 | −0.38130 | 0.91549 | 0 | 0 | 0 | 0.12843 | |
SVR | −0.01372 | −0.00485 | 0.00249 | 0.08978 | −0.00066 | −0.17769 | −0.97910 | −0.00005 | 0.00137 | 0.00116 | 0.03885 | |
White | SVR-AL0 | 0.00384 | −0.00003 | 0 | 0.08967 | 0 | −0.17770 | −0.97927 | 0 | 0 | 0 | 0.03736 |
Wine | SVR-AAL0 () | −0.01372 | −0.00485 | 0.00249 | 0.08978 | −0.00066 | −0.17769 | −0.97910 | −0.00005 | 0.00137 | 0.00116 | 0.03885 |
SVR-AAL0 () | 0 | 0 | 0 | 0.05853 | 0 | −0.25981 | −0.96388 | 0 | 0 | 0 | 0 |
Predictors | ||||
---|---|---|---|---|
Method | Temperature | Pressure | Humidity | Vacuum |
SVR | −0.81683 | −0.36372 | 0.18267 | 0.40881 |
SVR-AL0 | −1.0000 | −0.00004 | 0 | 0.00050 |
SVR-AAL0 (c = 1) | −1.0000 | −0.00004 | 0 | 0.00045 |
SVR-AAL0 (c = 0.1) | −0.89426 | 0 | 0 | 0.44755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christou, A.; Artemiou, A. Adaptive L0 Regularization for Sparse Support Vector Regression. Mathematics 2023, 11, 2808. https://doi.org/10.3390/math11132808
Christou A, Artemiou A. Adaptive L0 Regularization for Sparse Support Vector Regression. Mathematics. 2023; 11(13):2808. https://doi.org/10.3390/math11132808
Chicago/Turabian StyleChristou, Antonis, and Andreas Artemiou. 2023. "Adaptive L0 Regularization for Sparse Support Vector Regression" Mathematics 11, no. 13: 2808. https://doi.org/10.3390/math11132808
APA StyleChristou, A., & Artemiou, A. (2023). Adaptive L0 Regularization for Sparse Support Vector Regression. Mathematics, 11(13), 2808. https://doi.org/10.3390/math11132808