A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kriging Model of Rolling Bearings Based on the Finite Element Method
2.2. Time-Varying Fatigue Reliability Model of a Rolling Bearing
2.3. Sensitivity Analysis and Time-Varying Reliability Robust Design
3. Results
- The sensitivity of reliability to the mean values of and is positive, and the sensitivity to the mean values of and is negative. This means that when the mean values of and increase within the allowed initial value interval, the reliability increases, and when the mean values of and increase, the reliability decreases. The sensitivity of reliability to the variance of all parameters is negative. This means that when the variance of any one of the input parameters increases, the reliability decreases with it.
- In the calculation result of the sensitivity gradient of reliability to input parameters, the sensitivity gradient of reliability to is the largest, that is, the first two order statistical moments of have the greatest comprehensive influence on the fatigue reliability of rolling bearings under this moment, and it is necessary to appropriately invest production resources for design and processing accuracy control.
- In the calculation result of the sensitivity gradient of reliability to input parameters, the sensitivity gradient of reliability to is the smallest, that is, the first two order statistical moments of have the smallest comprehensive influence on the fatigue reliability of rolling bearing under this moment, and the design and processing accuracy control can be relaxed appropriately to save production cost.
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cerrada, M.; Sánchez, R.E.V.; Li, C.; Pacheco, F.; Cabrera, D.; de Oliveira, J.E.V.; Vásquez, R.E. A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Proc. 2018, 99, 169–196. [Google Scholar] [CrossRef]
- Tandon, N.; Choudhury, A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 1999, 32, 469–480. [Google Scholar] [CrossRef]
- Mcfadden, P.D.; Smith, J.D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A review. Tribol. Int. 1984, 17, 3–10. [Google Scholar] [CrossRef]
- Kam, O.M.; Noël, S.E.P.; Ramenah, H.; Kasser, P.; Tanougast, C. Comparative Weibull distribution methods for reliable global solar irradiance assessment in France areas. Renew. Energy 2021, 165, 194–210. [Google Scholar] [CrossRef]
- Shuto, S.; Amemiya, T. Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation. Reliab. Eng. Syst. Saf. 2022, 224, 108516. [Google Scholar] [CrossRef]
- Lundberg, G.; Palmgren, A. Dynamic capacity of rolling bearings. J. Appl. Mech. 1949, 16, 165–172. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Wei, P.; Guagliano, M.; Hou, S. A modified model of Lundberg—Palmgren rolling contact fatigue formula considering the effects of surface treatments. Friction 2023. [Google Scholar] [CrossRef]
- ISO 281:2007; Rolling Bearings: Dynamic Load Ratings and Rating Life. ISO: Geneva, Switzerland, 2007.
- Tian, X.; Shi, X.; Peng, C.; Yi, X. A Reliability Growth Process Model with Time-Varying Covariates and Its Application. Mathematics 2021, 9, 905. [Google Scholar] [CrossRef]
- Meng, D.; Lv, Z.; Yang, S.; Wang, H.; Xie, T.; Wang, Z. A time-varying mechanical structure reliability analysis method based on performance degradation. Structures 2021, 34, 3247–3256. [Google Scholar] [CrossRef]
- Aeran, A.; Siriwardane, S.C.; Mikkelsen, O.; Langen, I. A new nonlinear fatigue damage model based only on SN curve parameters. Int. J. Fatigue 2017, 103, 327–341. [Google Scholar] [CrossRef]
- Harris, T.A. A New Fatigue Life Model for Rolling Bearings. J. Tribol. 1985, 107, 367–377. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A cumulative damage theory of fatigue failure. Mater. Sci. Eng. 1978, 34, 147–160. [Google Scholar] [CrossRef]
- Bjørheim, F.; Pavlou, D.G.; Siriwardane, S.C. Nonlinear fatigue life prediction model based on the theory of the S-N fatigue damage envelope. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 1480–1493. [Google Scholar] [CrossRef]
- Kwofie, S.; Rahbar, N. A fatigue driving stress approach to damage and life prediction under variable amplitude loading. Int. J. Damage Mech. 2013, 22, 393–404. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Almaktoom, A.T. Dynamic reliability-based robust design optimization with time-variant probabilistic constraints. Eng. Optimiz. 2014, 46, 784–809. [Google Scholar] [CrossRef]
- Zhang, T. An improved high-moment method for reliability analysis. Struct. Multidiscip. Optim. 2017, 56, 1225–1232. [Google Scholar] [CrossRef]
- Zhang, T. Robust reliability-based optimization with a moment method for hydraulic pump sealing design. Struct. Multidiscip. Optim. 2018, 58, 1737–1750. [Google Scholar] [CrossRef]
- Zhang, T.; He, D. A Reliability-Based Robust Design Method for the Sealing of Slipper-Swash Plate Friction Pair in Hydraulic Piston Pump. IEEE Trans. Reliab. 2018, 67, 459–469. [Google Scholar] [CrossRef]
- Iannacone, L.; Sharma, N.; Tabandeh, A.; Gardoni, P. Modeling time-varying reliability and resilience of deteriorating infrastructure. Reliab. Eng. Syst. Saf. 2022, 217, 108074. [Google Scholar] [CrossRef]
- Zafar, T.; Zhang, Y.; Wang, Z. An efficient Kriging based method for time-dependent reliability based robust design optimization via evolutionary algorithm. Comput. Meth. Appl. Mech. Eng. 2020, 372, 113386. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, J.; Huang, F.; Lv, Y.; Wan, L. A novel adaptive Kriging method: Time-dependent reliability-based robust design optimization and case study. Comput. Ind. Eng. 2021, 162, 107692. [Google Scholar] [CrossRef]
- Jeong, S.; Murayama, M.; Yamamoto, K. Efficient optimization design method using kriging model. J. Aircr. 2005, 42, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Feng, Y.; Fei, C.; Bu, S. Improved decomposed-coordinated kriging modeling strategy for dynamic probabilistic analysis of multicomponent structures. IEEE Trans. Reliab. 2019, 69, 440–457. [Google Scholar] [CrossRef]
- Allaix, D.L.; Carbone, V.I. An improvement of the response surface method. Struct. Saf. 2011, 33, 165–172. [Google Scholar] [CrossRef]
- Zhang, D.; Han, X.; Jiang, C.; Liu, J.; Li, Q. Time-dependent reliability analysis through response surface method. J. Mech. Des. 2017, 139, 41404. [Google Scholar] [CrossRef]
- Tripathy, R.K.; Bilionis, I. Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. J. Comput. Phys. 2018, 375, 565–588. [Google Scholar] [CrossRef] [Green Version]
- White, D.A.; Arrighi, W.J.; Kudo, J.; Watts, S.E. Multiscale topology optimization using neural network surrogate models. Comput. Meth. Appl. Mech. Eng. 2019, 346, 1118–1135. [Google Scholar] [CrossRef]
- Keshtegar, B.; Mert, C.; Kisi, O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renew. Sustain. Energy Rev. 2018, 81, 330–341. [Google Scholar] [CrossRef]
- Chai, Y.; Huang, K.; Wang, S.; Xiang, Z.; Zhang, G. The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation. Mathematics 2023, 11, 1664. [Google Scholar] [CrossRef]
- Echard, B.; Gayton, N.; Lemaire, M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation. Struct. Saf. 2011, 33, 145–154. [Google Scholar] [CrossRef]
- Mai, H.T.; Lee, J.; Kang, J.; Nguyen-Xuan, H.; Lee, J. An Improved Blind Kriging Surrogate Model for Design Optimization Problems. Mathematics 2022, 10, 2906. [Google Scholar] [CrossRef]
- Cui, L.; Su, Y. Contact fatigue life prediction of rolling bearing considering machined surface integrity. Ind. Lubr. Tribol. 2022, 74, 73–80. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, S.; Correia, J.A.F.O.; De Jesus, A.M.P.; Veljkovic, M.; Berto, F. Fatigue reliability of wind turbines: Historical perspectives, recent developments and future prospects. Renew. Energy 2022, 200, 724–742. [Google Scholar] [CrossRef]
- Cheng, T.; Lu, D.D.; Siwakoti, Y.P. Circuit-Based Rainflow Counting Algorithm in Application of Power Device Lifetime Estimation. Energies 2022, 15, 5159. [Google Scholar] [CrossRef]
- Zhang, T. Matrix description of differential relations of moment functions in structural reliability sensitivity analysis. Appl. Math. Mech. 2017, 38, 57–72. [Google Scholar] [CrossRef]
- El Laithy, M.; Wang, L.; Harvey, T.J.; Vierneusel, B.; Correns, M.; Blass, T. Further understanding of rolling contact fatigue in rolling element bearings—A review. Tribol. Int. 2019, 140, 105849. [Google Scholar] [CrossRef]
No. | Running Time min | Rotational Speed r/min | Radial Load N |
---|---|---|---|
1 | 10 | 6000 | 800 |
2 | 10 | 8000 | 400 |
3 | 20 | 10,000 | 200 |
4 | 10 | 8000 | 400 |
5 | 10 | 6000 | 800 |
Bearing Parameters | Mean | Variance | Skewness | Kurtosis |
---|---|---|---|---|
Center circle diameter /mm | 102.4874 | 2.5 × 10−5 | 9.96 × 10−2 | 2.87 |
Roller diameter /mm | 13.4942 | 4.0 × 10−6 | 4.09 × 10−2 | 2.96 |
Inner raceway radius /mm | 7.1013 | 1.0 × 10−6 | −7.37 × 10−2 | 3.03 |
Outer ring channel radius /mm | 6.9965 | 1.0 × 10−6 | 1.29 × 10−1 | 2.69 |
Methods | Relative Error | |||
---|---|---|---|---|
The proposed method | 1000 h | −1.3737 | 91.52% | 0.1751% |
MCS method | 1000 h | \ | 91.36% | \ |
Input Parameters | |||||
---|---|---|---|---|---|
0.0335 | 69.4121 | −59.7692 | −57.7873 | 140.6342 | |
−4.66 × 10−6 | −79.8973 | −29.6581 | −27.7239 | ||
0.0335 | 105.8377 | 66.7230 | 64.0936 | ||
Weight | 0.0141% | 44.7162% | 28.1903% | 27.0794% |
Bearing Parameters | Before Optimization | After Optimization |
---|---|---|
Center circle diameter /mm | 102.4874 | 102.4913 |
Roller diameter /mm | 13.4942 | 13.5049 |
Inner raceway radius /mm | 7.1013 | 7.1042 |
Outer ring channel radius /mm | 6.9965 | 6.9889 |
Input Parameters | ||||
---|---|---|---|---|
Before optimization | 1000 h | −1.3737 | 91.52% | 140.6342 |
After optimization | 1000 h | −7.4634 | 99.99% | 1.0082 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
E, S.; Wang, Y.; Xie, B.; Lu, F. A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum. Mathematics 2023, 11, 2843. https://doi.org/10.3390/math11132843
E S, Wang Y, Xie B, Lu F. A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum. Mathematics. 2023; 11(13):2843. https://doi.org/10.3390/math11132843
Chicago/Turabian StyleE, Shiyuan, Yanzhong Wang, Bin Xie, and Fengxia Lu. 2023. "A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum" Mathematics 11, no. 13: 2843. https://doi.org/10.3390/math11132843
APA StyleE, S., Wang, Y., Xie, B., & Lu, F. (2023). A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum. Mathematics, 11(13), 2843. https://doi.org/10.3390/math11132843