A Generalized Lyapunov Inequality for a Pantograph Boundary Value Problem Involving a Variable Order Hadamard Fractional Derivative
Abstract
:1. Introduction
2. Preliminaries
- (i)
- S is called a generalized interval if it is either a standard interval, a point, or ∅.
- (ii)
- If S is a generalized interval, a finite set consisting of generalized intervals contained in S is called a partition of S, provided that every belongs to exactly one of the generalized intervals in the finite set .
- (iii)
- The function is a piecewise constant with respect to the partition of S, if for any , ψ is constant on W.
- ;
- is continuous on Ω and is a relatively compact subset of E;
- is a strict contraction on Ω, i.e., there exists such that
3. Existence of Solution
4. Generalized Lyapunov-Type Inequalities
5. Example
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balachandran, K.; Kiruthika, S.; Trujillo, J.J. Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 2013, 33B, 712–720. [Google Scholar] [CrossRef]
- Bouriah, S.; Foukrach, D.; Benchohra, M.; Graef, J. Existence and uniqueness of periodic solutions for some nonlinear fractional pantograph differential equations with ψ-Caputo derivative. Arab. J. Math. 2021, 10, 575–587. [Google Scholar] [CrossRef]
- Guan, K.; Wang, Q.; He, X. Oscillation of a pantograph differential equation with impulsive perturbations. Appl. Math. Comput. 2012, 219, 3147–3153. [Google Scholar] [CrossRef]
- Iserles, A. On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 1993, 4, 1–38. [Google Scholar] [CrossRef]
- Vivek, D.; Kanagarajan, K.; Harikrishnan, S. Existence and uniqueness results for pantograph equations with generalized fractional derivative. J. Nonlinear Anal. Appl. 2017, 2, 105–112. [Google Scholar] [CrossRef]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. Royal Soc. London A. Math. Physical Sci. 1971, 322, 447–468. [Google Scholar]
- Etemad, S.; Rezapour, S.; Sakar, F.M. On a fractional Caputo–Hadamard problem with boundary value conditions via different orders of the Hadamard fractional operators. Adv. Differ. Equ. 2020, 2020, 272. [Google Scholar] [CrossRef]
- Maazouz, K.; Henderson, J. Existence results for Katugampola fractional equations for boundary value problems. Panam. Math. J. 2020, 30, 81–98. [Google Scholar]
- Maazouz, K.; Rodriguez-Lopez, R. Differential equations of arbitrary order under Caputo-Fabizio derivative: Some existence results and study of stability. Math. Biosci. Eng. 2022, 18, 6234–6251. [Google Scholar] [CrossRef]
- Riaz, U.; Zada, A.; Ali, Z.; Zeeshan Popa, I.L.; Rezapour, S.; Etemad, S. On a Riemann–Liouville type implicit coupled system via generalized boundary conditions. Mathematics 2021, 9, 205. [Google Scholar] [CrossRef]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Almeida, R.; Torres, D.F.M. Computing Hadamard type operators of variable fractional order. Appl. Math. Comput. 2015, 257, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Tavares, D.; Torres, D.F. The Variable-Order Fractional Calculus of Variations; Springer International Publishing: Cham, Germany, 2019. [Google Scholar]
- Harikrishnan, S.; Elsayed, E.M.; Kanagarajan, K. Existence and uniqueness results for fractional pantograph equations involving ψ-Hilfer fractional derivative. Dyn. Contin. Discret. Impuls. Syst. 2018, 25, 319–328. [Google Scholar]
- Liapunoff, A.M. Problème Général de la Stabilité du Mouvement; (French) Annals of Mathematics Studies, No. 17; Princeton University Press: Princeton, NY, USA, 1947. [Google Scholar]
- Ferreira, R.A.C. On a Lyapunov-type inequality and the zeros of a certain Mittag–Leffler function. J. Math. Anal. Appl. 2014, 412, 1058–1063. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, C.; Wang, J. A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative. J. Math. Inequalities 2017, 11, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Bouazza, Z.; Souid, M.S.; Etemad, S.; Kaabar, M.K.A. Darbo fixed point criterion on solutions of a Hadamard nonlinear variable order problem and Ulam-Hyers-Rassias stability. J. Funct. Spaces 2022, 2022, 1769359. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge Tracts in Math. No. 66; Cambridge University Press: London, UK; New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graef, J.R.; Maazouz, K.; Zaak, M.D.A. A Generalized Lyapunov Inequality for a Pantograph Boundary Value Problem Involving a Variable Order Hadamard Fractional Derivative. Mathematics 2023, 11, 2984. https://doi.org/10.3390/math11132984
Graef JR, Maazouz K, Zaak MDA. A Generalized Lyapunov Inequality for a Pantograph Boundary Value Problem Involving a Variable Order Hadamard Fractional Derivative. Mathematics. 2023; 11(13):2984. https://doi.org/10.3390/math11132984
Chicago/Turabian StyleGraef, John R., Kadda Maazouz, and Moussa Daif Allah Zaak. 2023. "A Generalized Lyapunov Inequality for a Pantograph Boundary Value Problem Involving a Variable Order Hadamard Fractional Derivative" Mathematics 11, no. 13: 2984. https://doi.org/10.3390/math11132984
APA StyleGraef, J. R., Maazouz, K., & Zaak, M. D. A. (2023). A Generalized Lyapunov Inequality for a Pantograph Boundary Value Problem Involving a Variable Order Hadamard Fractional Derivative. Mathematics, 11(13), 2984. https://doi.org/10.3390/math11132984