Efficiency Evaluation of China’s Provincial Digital Economy Based on a DEA Cross-Efficiency Model
Abstract
:1. Introduction
2. DEA Model Establishment
2.1. The CCR Model
- (1)
- When θ = 1 and , the j-th DMU is DEA-effective;
- (2)
- When θ = 1 and or , the j-th DMU is weakly DEA-effective;
- (3)
- When θ < 1, the j-th DMU is non-DEA-effective.
2.2. The DEA Cross-Efficiency Model
3. Empirical Analysis
3.1. Indicator Selection
3.2. Data Sources
3.3. Input–Output Efficiency of China’s Provincial Digital Economy in 2020
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Suggestions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapscot, D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence; Educom Review; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Shim, J.-H. Analysis of the Influence of Digital Economy Development on the Korean Economy: Focusing on E-commerce. J. Ind. Econ. Bus. 2020, 33, 1591–1605. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, Y.; Huo, Z. Digital economic development of urban agglomeration economy effect. Stat. Decis. 2022, 38, 80–84. [Google Scholar] [CrossRef]
- D’souza, C.; Williams, D. The Digital Economy. Bank Can. Rev. 2017, 5–18. [Google Scholar]
- Hui, N.; Yang, X. Driving force of digital economy and the development of Chinese manufacturing high quality. J. Shaanxi Norm. Univ. Philos. Soc. Sci. Ed. 2022, 51, 133–147. [Google Scholar] [CrossRef]
- Liu, X.X.; Hui, N. Study on the impact of digital economy on the high-quality development of China’s manufacturing industry. Reform Econ. Syst. 2021, 5, 92–98. [Google Scholar]
- Zhao, S.; Peng, D.; Wen, H.; Song, H. Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities? Sustainability 2022, 14, 10235. [Google Scholar] [CrossRef]
- Si, X.F.; Li, M.S. Digital economy, employment structure and employment quality: An empirical analysis based on provin-cial data of China. Northwest Popul. J. 2022, 43, 54–69. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.D. Digital economy development of China’s influence on the upgrading of industrial structure. J. Econ. Manag. Res. 2021, 42, 15–29. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital economy, entrepreneurial activity and high-quality development: Empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. [Google Scholar] [CrossRef]
- Ding, C.; Liu, C.; Zheng, C.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2022, 14, 216. [Google Scholar] [CrossRef]
- Hao, X.; Wen, S.; Li, Y.; Xu, Y.; Xue, Y. Can the digital economy development curb carbon emissions? Evidence from China. Front. Psychol. 2022, 13, 938918. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Q. Impact and mechanism of digital economy on China’s carbon emissions: From the perspective of spatial heterogeneity. Environ. Sci. Pollut. Res. 2022, 30, 9642–9657. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Meng, F.S.; Zhao, Y. How does digital economy affect green total factor productivity at the industry level in China: From a perspective of global value chain. Environ. Sci. Pollut. Res. 2022, 29, 79497–79515. [Google Scholar] [CrossRef]
- Zhu, X.A.; Ma, Y.G. Study on the Impact of Digital Economy on the Change of Green Total Factor Productivity. Econ. Probl. 2022, 11, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, M.F.; Cui, L.M.; Kuang, A.P. Inpact of the digital economy on green total factor productivity in Chinese cities. J. Econ. Geogr. 2022, 42, 33–42. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total. Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- Moroz, M. The level of development of the digital economy in Poland and selected European countries: A comparative analysis. Found. Manag. 2017, 9, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Z.; Ren, X.G. The Dynamic mechanism, operation path and Development Countermeasures of digital Economy Innovation from the perspective of Science and Technology. Guizhou Soc. Sci. 2020, 12, 113–120. [Google Scholar] [CrossRef]
- Wang, S.P.; Teng, T.W.; Xia, Q.F.; Bao, H. The Spatial and temporal characteristics of the development level of China’s digi-tal economy and its innovation driving mechanism. Econ. Geogr. 2022, 42, 33–43. [Google Scholar] [CrossRef]
- Nie, C.T.; Zhang, F. Regional differences and driving factors of the digital economy development level in China: An empirical analysis based on spatial panel model. Tech. Econ. Manag. Res. 2022, 4, 105–110. [Google Scholar]
- Liu, J.; Yang, Y.Y.; Zhang, S.F. Measurement and Driving Factors of China’s digital Economy. Shanghai Econ. Res. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Arnold, S. Drivers and Barriers of Digital Market Integration in East Africa: A Case Study of Rwanda and Tanzania. Politi. Gov. 2022, 10, 106–115. [Google Scholar] [CrossRef]
- Peng, W.B.; Han, D.C.; Yin, Y.; Yang, Y.; Shi, X.F.; Kuang, J.S. Spatial Effects of Digital Economy in Beijing-Tianjin-Hebei Region. Econ. Geogr. 2022, 42, 136–143+232. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y. Research on the Spatial Distribution Pattern and Influencing Factors of Digital Economy Development in China. IEEE Access 2021, 9, 63094–63106. [Google Scholar] [CrossRef]
- Luo, R.; Zhou, N. Dynamic Evolution, Spatial Differences, and Driving Factors of China’s Provincial Digital Economy. Sustainability 2022, 14, 9376. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, H. Evaluation and Analysis of Regional Economic Growth Factors in Digital Economy Based on the Deep Neural Network. Math. Probl. Eng. 2022, 2022, 1121886. [Google Scholar] [CrossRef]
- Tang, L.; Lu, B.; Tian, T. Spatial Correlation Network and Regional Differences for the Development of Digital Economy in China. Entropy 2021, 23, 1575. [Google Scholar] [CrossRef]
- Han, Z.A.; Wu, H.Z.; Zhao, J.F. Research on Measurement and Evaluation of Coupling Coordination between Digital Economy and high-quality Development. Stat. Inf. Forum 2022, 37, 22–34. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Wu, J. A retrospective and perspective view on cross efficiency of data envelopment analysis (DEA). J. Univ. Sci. Technol. China 2013, 43, 941–947. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. New Dir. Program Eval. 1986, 1986, 73–105. [Google Scholar] [CrossRef]
- Charnes, A.; Clark, C.T.; Cooper, W.W.; Golany, B. A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the U.S. air forces. Ann. Oper. Res. 1985, 2, 95–112. [Google Scholar] [CrossRef]
- Friedman, L.; Sinuany-Stern, Z. Scaling units via the canonical correlation analysis in the DEA context. Eur. J. Oper. Res. 1997, 100, 629–637. [Google Scholar] [CrossRef]
- Sinuany-Stern, Z.; Mehrez, A.; Barboy, A. Academic departments efficiency via DEA. Comput. Oper. Res. 1994, 21, 543–556. [Google Scholar] [CrossRef]
- Yang, F.; Liang, L.; Bi, G.B.; Zha, Y. DEA efficiency evaluation model based on diverse weights. China J. Manag. Sci. 2008, S1, 84–87. [Google Scholar] [CrossRef]
- Green, R.H.; Doyle, J.R.; Cook, J.R. Preference voting and project ranking using DEA and cross-evaluation. Eur. J. Oper. Res. 1996, 90, 461–472. [Google Scholar] [CrossRef]
- Falagario, M.; Sciancalepore, F.; Costantino, N.; Pietroforte, R. Using a DEA-cross efficiency approach in public procurement tenders. Eur. J. Oper. Res. 2012, 218, 523–529. [Google Scholar] [CrossRef]
- Chen, W.; Li, S.-S.; Zhang, J.; Mehlawat, M.K. A comprehensive model for fuzzy multi-objective portfolio selection based on DEA cross-efficiency model. Soft Comput. 2020, 24, 2515–2526. [Google Scholar] [CrossRef]
- Chen, L.; Wu, F.; Wang, Y.; Li, M. Analysis of the environmental efficiency in China based on the DEA cross-efficiency approach under different policy objectives. Expert Syst. 2020, 37, e12461. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.M. DEA cross-efficiency target setting approach based on different decision-making context. Syst. Eng.-Theory Pract. 2021, 41, 2683–2695. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, K.Y.; Yao, X.D. Economic benefits evaluation of urban public infrastructure based on the DEA cross-efficiency method. China Soft Sci. Mag. 2015, 1, 172–183. [Google Scholar]
- Wang, J.; Zhu, J.; Luo, X. Research on the measurement of China’s digital economy development and the characteristics. J. Quant. Technol. Econ. 2021, 38, 26–42. [Google Scholar] [CrossRef]
- Cheng, G.B.; Li, Y. Regional differences and efficiency evaluation of digital economy development level based on in-put-output perspective. Stat. Decis. 2022, 38, 109–113. [Google Scholar] [CrossRef]
- Jin, C.Y.; Xu, A.T.; Qiu, K.Y. Measurement of China’s provincial digital economy and its spatial correlation. J. Stat. Inf. 2022, 6, 11–21. [Google Scholar]
- Fan, H.J.; Wu, T. Digitalization measure and index system construct in China. J. Cap. Univ. Econ. Bus. 2020, 22, 3–12. [Google Scholar] [CrossRef]
Indicator Type | Indicator Type | Indicator Representative |
---|---|---|
Input indicator | Digital infrastructure (Input 1) | Number of internet broadband access ports (×104) |
Digital technology (Input 2) | Fixed assets in information transmission, software and information technology services (×CNY 108) | |
Digital talent (Input 3) | Employed persons in information transmission, software and information technology services (×104 persons) | |
Output indicator | Digital industrialization (Output 1) | Software business revenue (×CNY 108) |
Industrial digitalization (Output 2) | E-commerce sales (×CNY 108) |
Rank | Province | |
---|---|---|
1 | Chongqing | 0.9768 |
2 | Tianjin | 0.8474 |
3 | Shanghai | 0.8363 |
4 | Shandong | 0.7614 |
5 | Jiangsu | 0.6763 |
6 | Guangdong | 0.6747 |
7 | Zhejiang | 0.6705 |
8 | Beijing | 0.6171 |
9 | Fujian | 0.5115 |
10 | Anhui | 0.4997 |
11 | Liaoning | 0.4884 |
12 | Inner Mongolia | 0.4309 |
13 | Hubei | 0.4127 |
14 | Sichuan | 0.3809 |
15 | Hunan | 0.3781 |
16 | Jiangxi | 0.3691 |
17 | Shaanxi | 0.3685 |
18 | Shanxi | 0.3479 |
19 | Yunnan | 0.3241 |
20 | Hainan | 0.3121 |
21 | Guizhou | 0.2787 |
22 | Hebei | 0.2727 |
23 | Guangxi | 0.2551 |
24 | Ningxia | 0.1910 |
25 | Henan | 0.1840 |
26 | Qinghai | 0.1453 |
27 | Xinjiang | 0.1337 |
28 | Gansu | 0.1309 |
29 | Jilin | 0.1259 |
30 | Heilongjiang | 0.0679 |
Mean value | 0.4223 |
Rank | Province | Input 1 | Input 2 | Input 3 | Total Output |
---|---|---|---|---|---|
1 | Chongqing | ||||
2 | Tianjin | ||||
3 | Shanghai | √ | √ | ||
4 | Shandong | √ | √ | √ | √ |
5 | Jiangsu | √ | √ | √ | √ |
6 | Guangdong | √ | √ | √ | √ |
7 | Zhejiang | √ | √ | √ | √ |
8 | Beijing | √ | √ | ||
9 | Fujian | √ | √ | ||
10 | Anhui | √ | |||
11 | Liaoning | √ | √ | ||
12 | Inner Mongolia | √ | |||
13 | Hubei | √ | √ | √ | √ |
14 | Sichuan | ||||
15 | Hunan | ||||
16 | Jiangxi | √ | √ | ||
17 | Shaanxi | √ | |||
18 | Shanxi | ||||
19 | Yunnan | ||||
20 | Hainan | ||||
21 | Guizhou | ||||
22 | Hebei | √ | √ | ||
23 | Guangxi | √ | √ | ||
24 | Ningxia | ||||
25 | Henan | √ | √ | √ | |
26 | Qinghai | ||||
27 | Xinjiang | √ | |||
28 | Gansu | ||||
29 | Jilin | ||||
30 | Heilongjiang |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Hu, J.; Wu, L. Efficiency Evaluation of China’s Provincial Digital Economy Based on a DEA Cross-Efficiency Model. Mathematics 2023, 11, 3005. https://doi.org/10.3390/math11133005
Xu Y, Hu J, Wu L. Efficiency Evaluation of China’s Provincial Digital Economy Based on a DEA Cross-Efficiency Model. Mathematics. 2023; 11(13):3005. https://doi.org/10.3390/math11133005
Chicago/Turabian StyleXu, Yaqiao, Jiayi Hu, and Liusan Wu. 2023. "Efficiency Evaluation of China’s Provincial Digital Economy Based on a DEA Cross-Efficiency Model" Mathematics 11, no. 13: 3005. https://doi.org/10.3390/math11133005
APA StyleXu, Y., Hu, J., & Wu, L. (2023). Efficiency Evaluation of China’s Provincial Digital Economy Based on a DEA Cross-Efficiency Model. Mathematics, 11(13), 3005. https://doi.org/10.3390/math11133005