Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method
Abstract
:1. Introduction
2. The Rikitake-Type System
2.1. Global Analytic First Integrals and Hamilton–Poisson Realizations
- This system admits a symmetry with respect to the axis (invariant to the transformation for , ) and symmetries with respect to all coordinate axes for and ;
- The system has a Hamilton–Poisson realization, with the Hamiltonian and the Casimir given by and , respectively, for , , , and for the special case where and ;
- The existence of the periodic orbits ensures that the solutions have periodic behaviors.
2.2. Closed-Form Solutions
- (i)
- For , ,
- (ii)
- In the case , ,
- (iii)
- A remarkable case is , .
3. The Steps of the OHPM Technique
4. Approximate Analytic Solutions via OHPM
5. Numerical Results and Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Case k>0, α>0
Appendix A.2. The Case k<0, α>0
Appendix A.3. The Remarkable Case k=1, α=0
References
- Rikitake, T. Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 1958, 54, 89–105. [Google Scholar] [CrossRef]
- Steeb, W.H. Continuous symmetries of the Lorenz model and the Rikitake two-disc dynamo system. J. Phys. A Math. Gen. 1982, 15, 389–390. [Google Scholar] [CrossRef]
- Braga, D.C.; Scalco, D.F.; Mello, L.F. On the stability of the equilibria of the Rikitake system. Phys. Lett. A 2010, 374, 4316–4320. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. On the symmetries of a Rikitake type system. C. R. Math. Acad. Sci. Paris 2012, 350, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Lazureanu, C.; Binzar, T. A Rikitake type system with quadratic control. Int. J. Bifurcat. Chaos 2012, 22, 1250274. [Google Scholar] [CrossRef]
- Binzar, T.; Lazureanu, C. A Rikitake type system with one control. Discret. Contin. Dyn. Syst.-B 2013, 18, 1755–1776. [Google Scholar] [CrossRef]
- Lazureanu, C. Hamilton–Poisson realizations of the integrable deformations of the Rikitake system. Adv. Math. Phys. 2017, 2017, 4596951. [Google Scholar] [CrossRef] [Green Version]
- Lazureanu, C.; Petrisor, C.; Hedrea, C. On a deformed version of the two-disk dynamo system. Appl. Math. 2021, 66, 345–372. [Google Scholar] [CrossRef]
- Llibre, J.; Valls, C. Global analytic integrability of the Rabinovich system. J. Geom. Phys. 2008, 58, 1762–1771. [Google Scholar] [CrossRef]
- Xiang, Z. Integrals of motion of the Rabinovich system. J. Phys. A Math. Gen. 2000, 33, 5137. [Google Scholar] [CrossRef]
- Tudoran, R.M.; Girban, A. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discret. Cont. Dyn.-B 2011, 15, 789–823. [Google Scholar] [CrossRef]
- Lazureanu, C.; Petrisor, C. Stability and energy-Casimir Mapping for integrable deformations of the Kermack-McKendrick system. Adv. Math. Phys. 2018, 2018, 5398768. [Google Scholar] [CrossRef]
- Lazureanu, C.; Binzar, T. Some symmetries of a Rossler type system. Sci. Bull. Math.-Phys. 2013, 58, 1–6. [Google Scholar]
- Lazureanu, C.; Binzar, T. Symplectic realizations and symmetries of a Lotka-Volterra type system. Regul. Chaotic Dyn. 2013, 18, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Lazureanu, C.; Caplescu, C. Stabilization of the T system by an integrable deformation. In Proceedings of the International Conference on Applied Mathematics and Numerical Methods, Craiova, Romania, 29–31 October 2020. [Google Scholar] [CrossRef]
- Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Seledzhi, S.M. Hidden attractor in the Rabinovich system, Chua circuits and PLL. AIP Conf. Proc. 2016, 1738, 210008. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H. Intelligent control of convergence rate of impulsive dynamic systems affected by nonlinear disturbances under stabilizing impulses and its application in Chua’s circuit. Chaos Solitons Fractals 2023, 169, 113289. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Raza, N.; Jhangeer, A. Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability. Chaos Solitons Fractals 2023, 171, 113436. [Google Scholar] [CrossRef]
- Zheng, W.; Gan, R.; Yuan, Q.; Guo, H.; Ma, H.; Zhang, M.; Xiao, B.; Pan, Y. Design and implementation of a dynamic system simulation framework for plasma control system verification platform. Fusion Eng. Des. 2022, 182, 113249. [Google Scholar] [CrossRef]
- Rollo, J.; Crawford, J.; Hardy, J. A dynamical systems approach for multiscale synthesis of Alzheimer’s pathogenesis. Neuron. 2023; in press. [Google Scholar] [CrossRef]
- Robson, D.N.; Li, J.M. A dynamical systems view of neuroethology: Uncovering stateful computation in natural behaviors. Curr. Opin. Neurobiol. 2022, 73, 102517. [Google Scholar] [CrossRef]
- Brooks, J.; Crone, J.C.; Spangler, D.P. A physiological and dynamical systems model of stress. Int. J. Psychophysiol. 2021, 166, 83–91. [Google Scholar] [CrossRef] [PubMed]
- He, J.H.; Wu, X.H. Variational iteration method: New development and applications. Comp. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, Q.; Atluri, S.N. Combination of the variational iteration method and numerical algorithms for nonlinear problems. Appl. Math. Model. 2020, 79, 243–259. [Google Scholar] [CrossRef]
- Amer, T.S.; Bek, M.A.; Hassan, S.S.; Sherif Elbendary. The stability analysis for the motion of a nonlinear damped vibrating dynamical system with three-degrees-of-freedom. Results Phys. 2021, 28, 104561. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Kharrat, B.N.; Toma, G. Analytical Solution of Ordinary Fractional Differential Equations by Modified Homotopy Perturbation Method and Laplace Transform. J. Phys. Conf. Ser. 2019, 1366, 012037. [Google Scholar]
- Hussain, S.; Shah, A.; Ayub, S.; Ullah, A. An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon 2019, 5, e03060. [Google Scholar] [CrossRef] [Green Version]
- Bota, C.; Caruntu, B.; Tucu, D.; Lapadat, M.; Pasca, M.S. A Least Squares Differential Quadrature Method for a Class of Nonlinear Partial Differential Equations of Fractional Order. Mathematics 2020, 8, 1336. [Google Scholar] [CrossRef]
- Caruntu, B.; Bota, C.; Lapadat, M.; Pasca, M.S. Polynomial Least Squares Method for Fractional Lane-Emden Equations. Symmetry 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- El-Rashidy, K.; Seadawy Aly, R.; Saad, A.; Makhlou, M.M. Multiwave, Kinky breathers and multi-peak soliton solutions for the nonlinear Hirota dynamical system. Results Phys. 2020, 19, 103678. [Google Scholar] [CrossRef]
- Marinca, V.; Draganescu, G.E. Construction of approximate periodic solutions to a modified van der Pol oscillator. Nonlinear Anal. Real World Appl. 2010, 11, 4355–4362. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. An optimal variational iteration method. Appl. Math. Lett. 2011, 24, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Herisanu, N.; Marinca, V. Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method. Comput. Math. Appl. 2010, 60, 1607–1615. [Google Scholar] [CrossRef] [Green Version]
- Marinca, V.; Herisanu, N. The Optimal Homotopy Asymptotic Method—Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Marinca, V.; Herisanu, N. An application of the optimal homotopy asymptotic method to Blasius problem. Rom. J. Tech. Sci. Appl. Mech. 2015, 60, 206–215. [Google Scholar]
- Marinca, V.; Herisanu, N. Nonlinear dynamic analysis of an electrical machine rotor-bearing system by the optimal homotopy perturbation method. Comp. Math. Appl. 2011, 61, 2019–2024. [Google Scholar] [CrossRef] [Green Version]
- Marinca, V.; Ene, R.D.; Marinca, B. Optimal Homotopy Perturbation Method for nonlinear problems with applications. Appl. Comp. Math. 2022, 21, 123–136. [Google Scholar]
- Darvishi, M.T.; Khani, F.; Hamedi-Nezhad, S.; Ryu, S.-W. New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations. Int. J. Comput. Math. 2010, 87, 908–919. [Google Scholar] [CrossRef]
- Momani, S.; Erjaee, G.H.; Alnasr, M.H. The modified homotopy perturbation method for solving strongly nonlinear oscillators. Comput. Math. Appl. 2009, 58, 2209–2220. [Google Scholar] [CrossRef] [Green Version]
- Kharrat, B.N.; Toma, G. Modified Homotopy Perturbation Method by Using Sumudu Transform for Solving Initial Value Problems Represented By System of Nonlinear Partial Differential Equations. World Appl. Sci. J. 2018, 36, 844–849. [Google Scholar]
- Belendez, A.; Pascual, C.; Belendez, T.; Hernandez, A. Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method. Nonlinear Anal.-Real. 2009, 10, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Zubair, T.; Rashid, I.; Rashid, I.; Yildirim, A.; Mohyud-Din, S.T. Modified Homotopy Analysis Method for Zakharov–Kuznetsov Equations. Walailak J. Sci. Tech. 2013, 10, 467–478. [Google Scholar]
- Yin, X.B.; Kumar, S.; Kumar, D. A modified homotopy analysis method for solution of fractional wave equations. Adv. Mech. Eng. 2015, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Naher, H.; Abdullah, F.A.; Akbar, M.A. The exp-function method for new exact solutions of the nonlinear partial differential equations. Int. J. Phys. Sci. 2011, 6, 6706–6716. [Google Scholar]
- Misirli, E.; Gurefe, Y. Exp-function method for solving nonlinear evolution equations. Math. Comput. Appl. 2011, 16, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Abdou, M.A.; Hendi, A.; Aaid, B. New Applications of Exp-function Method for Solving A Complex Nonlinear Evolution Equations. Stud. Nonlinear Sci. 2012, 3, 14–23. [Google Scholar]
- Shakeel, M.; Attaullah; Shah, N.A.; Chung, J.D. Application of modified exp-function method for strain wave equation for finding analytical solutions. Ain Shams Eng. J. 2023, 14, 101883. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Abdelaziz, M.A.M. The modified Exp-function method and its applications to the generalized K(n,n) and BBM equations with variable coefficient. Iran. J. Sci. Technol. Trans. A Sci. 2012, 36, 359–365. [Google Scholar]
- Shakeel, M.; Attaullah; Shah, N.A.; Chung, J.D. Modified Exp-Function Method to Find Exact Solutions of Microtubules Nonlinear Dynamics Models. Symmetry 2023, 15, 360. [Google Scholar] [CrossRef]
- Akturk, T. Modified exponential function method for nonlinear mathematical models with Atangana conformable derivative. Rev. Mex. Fis. 2021, 67, 040704. [Google Scholar] [CrossRef]
- Shakeel, M.; Mohyud-Din, S.T.; Iqbal, M.A. Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves. Pramana J. Phys. 2018, 91, 28. [Google Scholar] [CrossRef]
- Ayati, Z.; Badiepour, A. Two New Modifications of the Exp-Function Method for Solving the Fractional-Order Hirota-Satsuma Coupled KdV. Adv. Math. Phys. 2022, 2022, 6304896. [Google Scholar] [CrossRef]
- Hardy, Y.; Steeb, W.-H. The Rikitake Two-Disk Dynamo System and Domains with Periodic Orbits. Int. J. Theor. Phys. 1999, 38, 2413–2417. [Google Scholar] [CrossRef]
t | |||||
---|---|---|---|---|---|
0 | 1.257327 | 1.201336 | 3.785027 | 7.624456 | 6.176531 |
1/2 | 4.468917 | 9.189849 | 1.045288 | 2.676522 | 1.844087 |
1 | 1.152456 | 5.318678 | 1.044831 | 1.858868 | 2.960618 |
3/2 | 1.308409 | 1.062711 | 2.531494 | 2.738590 | 3.229869 |
2 | 1.991649 | 1.189236 | 1.874768 | 2.111766 | 2.062485 |
5/2 | 7.220934 | 1.019888 | 8.060565 | 2.758030 | 1.833048 |
3 | 1.354596 | 6.872820 | 1.770506 | 2.776405 | 2.159764 |
7/2 | 1.740249 | 6.252692 | 1.092423 | 1.025640 | 1.510173 |
4 | 1.119755 | 4.032325 | 1.079516 | 1.399745 | 5.298769 |
9/2 | 6.124672 | 1.630336 | 2.412921 | 1.487217 | 4.939037 |
5 | 1.045304 | 3.376512 | 3.281965 | 3.786340 | 1.117548 |
t | |||
---|---|---|---|
0 | 2.305100 | 1.403738 | 5.510869 |
1/2 | 5.947881 | 7.017700 | 4.043440 |
1 | 4.880902 | 4.392379 | 2.660502 |
3/2 | 3.681659 | 7.508715 | 3.074690 |
2 | 3.997419 | 7.857658 | 3.787098 |
5/2 | 6.828394 | 1.448007 | 5.347465 |
3 | 2.205485 | 1.818600 | 6.491557 |
7/2 | 6.357189 | 8.991882 | 4.421671 |
4 | 1.532726 | 4.305329 | 2.281703 |
9/2 | 9.329380 | 1.755498 | 8.361002 |
5 | 1.002945 | 9.415189 | 2.679244 |
t | ||||
---|---|---|---|---|
0 | 2.575717 | 1.154631 | 9.769962 | 1.776356 |
1/2 | 8.589703 | 2.034201 | 3.926340 | 7.512735 |
1 | 1.072679 | 1.670757 | 3.924268 | 7.510218 |
3/2 | 8.272699 | 2.130846 | 4.292848 | 7.505662 |
2 | 7.439898 | 2.030329 | 3.818494 | 7.512221 |
5/2 | 7.643807 | 1.820285 | 4.163315 | 7.525591 |
3 | 7.848230 | 1.887592 | 3.981412 | 7.511741 |
7/2 | 7.910670 | 2.118086 | 4.118728 | 7.517661 |
4 | 8.160504 | 2.078708 | 4.070157 | 7.532979 |
9/2 | 8.540867 | 1.944186 | 4.058795 | 7.515431 |
5 | 8.781798 | 2.054146 | 4.001397 | 7.502956 |
t | |||
---|---|---|---|
0 | 0.5 | 0.5000000256 | 2.568413 |
1/2 | 1.5214552317 | 1.5214806203 | 2.538851 |
1 | 2.8716257775 | 2.8716245167 | 1.260769 |
3/2 | 2.2488093942 | 2.2488113818 | 1.987665 |
2 | 2.8435419487 | 2.8435503176 | 8.368986 |
5/2 | 1.7711339212 | 1.7711378969 | 3.975644 |
3 | 0.5827320936 | 0.5827293699 | 2.723671 |
7/2 | 0.3106026991 | 0.3106006161 | 2.082953 |
4 | 0.6229399329 | 0.6229416108 | 1.677919 |
9/2 | 1.8801975655 | 1.8801969832 | 5.823633 |
5 | 2.8117250468 | 2.8117289431 | 3.896274 |
t | |||
---|---|---|---|
0 | 0.5 | 0.4999999999 | 3.561040 |
1/2 | 0.8847309585 | 0.8847308956 | 6.291253 |
1 | 0.3219523370 | 0.3219522986 | 3.837036 |
3/2 | −0.6010213841 | −0.6010213748 | 9.341504 |
2 | −0.8621287789 | −0.8621288420 | 6.308938 |
5/2 | −0.1974129935 | −0.1974130787 | 8.513892 |
3 | 0.6890139943 | 0.6890140472 | 5.291821 |
7/2 | 0.8221568424 | 0.8221570945 | 2.520653 |
4 | 0.0683396173 | 0.0683395592 | 5.812823 |
9/2 | −0.7623835272 | −0.7623835803 | 5.315807 |
5 | −0.7653990825 | −0.7653994132 | 3.306396 |
t | |||
---|---|---|---|
0 | 0.5 | 0.4999999999 | 3.275157 |
3/5 | −0.6939047661 | −0.6938988897 | 5.876456 |
6/5 | −1.2734211748 | −1.2734197882 | 1.386637 |
9/5 | −1.3237111667 | −1.3237099418 | 1.224830 |
12/5 | −0.9302874402 | −0.9302835499 | 3.890361 |
3 | 0.1717944434 | 0.1718080341 | 1.359061 |
18/5 | 1.1016264922 | 1.1016412743 | 1.478212 |
21/5 | 1.3448426458 | 1.3448541193 | 1.147350 |
24/5 | 1.1874060275 | 1.1874195726 | 1.354508 |
27/5 | 0.3999481041 | 0.3999621828 | 1.407868 |
6 | −0.7760295495 | −0.7760248831 | 4.666312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, R.-D.; Pop, N. Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method. Mathematics 2023, 11, 3078. https://doi.org/10.3390/math11143078
Ene R-D, Pop N. Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method. Mathematics. 2023; 11(14):3078. https://doi.org/10.3390/math11143078
Chicago/Turabian StyleEne, Remus-Daniel, and Nicolina Pop. 2023. "Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method" Mathematics 11, no. 14: 3078. https://doi.org/10.3390/math11143078
APA StyleEne, R. -D., & Pop, N. (2023). Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method. Mathematics, 11(14), 3078. https://doi.org/10.3390/math11143078