Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L2 Regularization
Abstract
:1. Introduction
2. The Forward Problem
3. The Inverse Problem
3.1. The Identification Problem
3.2. Existence, Stability, and Convergence of the Regularized Solutions
- (i)
- The existence: There exists a minimizer for any data .
- (ii)
- The stability: For a given regularization parameter , the minimizers of (7) depend continuously on .
- (iii)
- The convergence: As the noise level and the regularization parameter (chosen by a priori rule) both tend to zero, the regularized solutions converge to the exact parameter .
3.3. Convergence Rates
- 1.
- the solution of (14) with exists for any ,
- 2.
- there exists such thatin a sufficiently large ball around ,
- 3.
- the function ξ, which is found in Theorem 1, satisfies .
4. Numerical Computation
4.1. Computation of the Gradient for the Regularization Functional
4.2. Transformation of the Adjoint Problem
4.3. Solving the Minimization Problem via the CG Algorithm
Algorithm 1 The CG method for the minimization problem (6) |
|
4.4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Pu, H.; Cao, L.; Sha, Z.; Yu, H.; Zhang, J.; Zhang, L. Damage Creep Model of Viscoelastic Rock Based on the Distributed Order Calculus. Appl. Sci. 2023, 13, 4404. [Google Scholar] [CrossRef]
- Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Time-fractional diffusion of distributed order. J. Vib. Control 2008, 14, 1267–1290. [Google Scholar] [CrossRef] [Green Version]
- Meerschaert, M.M.; Scheffler, H.P. Stochastic model for ultraslow diffusion. Stoch. Process. Their Appl. 2006, 116, 1215–1235. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, I.; Chechkin, A.; Klafter, J. Distributed-order fractional kinetics. arXiv 2004, arXiv:cond-mat/0401146. [Google Scholar]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M.; Gonchar, V.Y. Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 2003, 6, 259–280. [Google Scholar]
- Dräger, J.; Klafter, J. Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 2000, 84, 5998. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Li, Y.; Chen, Y. Design, implementation and application of distributed order PI control. ISA Trans. 2013, 52, 429–437. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Farghaly, A.A.; Abed-Elhameed, T.M.; Aly, S.A.; Arafa, A.A. Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control. Eur. Phys. J. Plus 2020, 135, 32. [Google Scholar] [CrossRef]
- Ding, W.; Patnaik, S.; Sidhardh, S.; Semperlotti, F. Applications of distributed-order fractional operators: A review. Entropy 2021, 23, 110. [Google Scholar] [CrossRef]
- Debnath, P.; Srivastava, H.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus: Recent Advances and Applications; Forum for Interdisciplinary Mathematics; Springer Nature: Singapore, 2022. [Google Scholar]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Y.; Yamamoto, M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 2015, 257, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Sinai, Y.G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 1983, 27, 256–268. [Google Scholar] [CrossRef]
- Schiessel, H.; Sokolov, I.; Blumen, A. Dynamics of a polyampholyte hooked around an obstacle. Phys. Rev. E 1997, 56, R2390. [Google Scholar] [CrossRef]
- Iglói, F.; Turban, L.; Rieger, H. Anomalous diffusion in aperiodic environments. Phys. Rev. E 1999, 59, 1465. [Google Scholar] [CrossRef] [Green Version]
- Kochubei, A.N. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 2008, 340, 252–281. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Luchko, Y.; Yamamoto, M. Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 2014, 17, 1114–1136. [Google Scholar] [CrossRef]
- Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12, 409–422. [Google Scholar]
- Meerschaert, M.M.; Nane, E.; Vellaisamy, P. Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 2011, 379, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Kubica, A.; Ryszewska, K. Fractional diffusion equation with distributed-order Caputo derivative. J. Integral Equ. Appl. 2019, 31, 195–243. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kian, Y.; Soccorsi, E. Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 2019, 115, 95–126. [Google Scholar] [CrossRef]
- Li, Z.; Luchko, Y.; Yamamoto, M. Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem. Comput. Math. Appl. 2017, 73, 1041–1052. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 2015, 69, 926–948. [Google Scholar] [CrossRef]
- Gao, G.; Sun, H.; Sun, Z. Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 2015, 298, 337–359. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 2016, 66, 1281–1312. [Google Scholar] [CrossRef]
- Ford, N.J.; Morgado, M.L.; Rebelo, M. An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Electron. Trans. Numer. Anal. 2015, 44, 289–305. [Google Scholar]
- Gao, G.; Alikhanov, A.A.; Sun, Z. The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 2017, 73, 93–121. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Equ. 2016, 32, 591–615. [Google Scholar] [CrossRef]
- Morgado, M.L.; Rebelo, M. Numerical approximation of distributed order reaction–diffusion equations. J. Comput. Appl. Math. 2015, 275, 216–227. [Google Scholar] [CrossRef]
- Bu, W.; Xiao, A.; Zeng, W. Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 2017, 72, 422–441. [Google Scholar] [CrossRef]
- Rundell, W.; Zhang, Z. Fractional diffusion: Recovering the distributed fractional derivative from overposed data. Inverse Probl. 2017, 33, 035008. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fujishiro, K.; Li, G. Uniqueness in the inversion of distributed orders in ultraslow diffusion equations. J. Comput. Appl. Math. 2020, 369, 112564. [Google Scholar] [CrossRef]
- Liu, J.; Sun, C.; Yamamoto, M. Recovering the weight function in distributed order fractional equation from interior measurement. Appl. Numer. Math. 2021, 168, 84–103. [Google Scholar] [CrossRef]
- Jin, B.; Kian, Y. Recovery of a Distributed Order Fractional Derivative in an Unknown Medium. arXiv 2022, arXiv:2207.12929. [Google Scholar]
- Bazhlekova, E. Estimates for a general fractional relaxation equation and application to an inverse source problem. Math. Methods Appl. Sci. 2018, 41, 9018–9026. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Yuan, L.; Liang, K. Inverse source problem for a distributed-order time fractional diffusion equation. J. Inverse Ill-Posed Probl. 2020, 28, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Cheng, X.; Liang, K. Solving a backward problem for a distributed-order time fractional diffusion equation by a new adjoint technique. J. Inverse Ill-Posed Probl. 2020, 28, 471–488. [Google Scholar] [CrossRef]
- Hai, D.N.D. Identifying a space-dependent source term in distributed order time-fractional diffusion equations. Math. Control Relat. Fields 2023, 13, 1008–1022. [Google Scholar] [CrossRef]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996; Volume 375. [Google Scholar]
- Isakov, V. Preface–Inverse Problems for Partial Differential Equations Third Edition Preface; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Wei, T.; Wang, J. Determination of Robin coefficient in a fractional diffusion problem. Appl. Math. Model. 2016, 40, 7948–7961. [Google Scholar] [CrossRef]
0.004 | 0.008 | 0.016 | 0.032 | 0.064 | |
0.0069 | 0.0087 | 0.0149 | 0.0266 | 0.0487 | |
0.0052 | 0.0065 | 0.0110 | 0.0197 | 0.0362 | |
0.3256 | 0.7712 | 0.8387 | 0.8756 |
0.004 | 0.008 | 0.016 | 0.032 | 0.064 | 0.128 | |
0.0173 | 0.0232 | 0.0320 | 0.0466 | 0.0571 | 0.0706 | |
0.0121 | 0.0163 | 0.0224 | 0.0326 | 0.0400 | 0.0495 | |
0.4226 | 0.4634 | 0.5416 | 0.2938 | 0.3059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Liang, K.; Wang, H. Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L2 Regularization. Mathematics 2023, 11, 3101. https://doi.org/10.3390/math11143101
Yuan L, Liang K, Wang H. Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L2 Regularization. Mathematics. 2023; 11(14):3101. https://doi.org/10.3390/math11143101
Chicago/Turabian StyleYuan, Lele, Kewei Liang, and Huidi Wang. 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L2 Regularization" Mathematics 11, no. 14: 3101. https://doi.org/10.3390/math11143101
APA StyleYuan, L., Liang, K., & Wang, H. (2023). Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L2 Regularization. Mathematics, 11(14), 3101. https://doi.org/10.3390/math11143101