A Simplified Model for the On-Line Identification of Bearing Direct-Dynamic Parameters Based on Algebraic Identification (AI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model of the Rotor-Bearing System with Multiple DOFs
2.2. Mathematical Model of the 2-DOF Rotor-Bearing System
2.3. Comparison between the Multiple-DOF and the Simplified 2-DOF Models
2.4. Mathematical Model for the Online Algebraic Identification of the Direct Dynamic Coefficients of a Bearing in a Rotor-Bearing System at a Constant Speed
3. Results
3.1. Numerical Results
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Direct dynamic coefficients of stiffness | Stiffness of the rotor | ||
Cross-coupled dynamic coefficients of stiffness | Angular acceleration | ||
Direct dynamic coefficients of damping | Modulus of elasticity | ||
Cross-coupled dynamic coefficients of damping | Density | ||
Lateral displacements | Poisson ratio | ||
Angular displacements | Radius of shaft | ||
Vector containing the nodal displacements; | Element length | ||
, , | The mass, eccentricity, and angular position of the unbalance, respectively | Disk thickness | |
The global mass matrix of the system | Inner radius of the disk | ||
The global damping matrix | Outer radius of the disk | ||
The gyroscopic effects as a function of the angular speed | Time | ||
Damping attributable to the supports | , | Algebraic identifier coefficient arrays | |
The global stiffness matrix | , | Vectors of independent terms of the algebraic identifier | |
The stiffness attributable to the supports | , | The dynamic parameter vectors to identify | |
The stiffness attributable to the rotor | Diameter of journal | ||
Stiffness matrix as a function of the angular acceleration of the rotor | Length of journal | ||
; | The vectors of the centrifugal force components generated by the unbalance mass | Length-to-diameter ratio | |
The inertial frame | Radial clearance of journal bearing | ||
The speed of rotation | Fluid injection port diameter | ||
L | Length of shaft | Fluid injection ports | |
Unbalance mass location | |||
Journal-bearing location | |||
, | Generalized independent coordinates | ||
Modal shape function | |||
The kinetic energy | |||
U | The strain energy | ||
The virtual work |
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
Appendix A.5
Appendix A.6
References
- Lund, J.W. Self-Excited, Stationary Whirl Orbits of a Journal in a Sleeve Bearing; Rensselaer Polytechnic Institute: Troy, NY, USA, 1966. [Google Scholar]
- Vance, J.M. Rotordynamics of Turbomachinery; John Wiley & Sons: New York, NY, USA, 1988; ISBN 0471802581. [Google Scholar]
- Dimarogonas, A. Vibration for Engineers, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1996; ISBN 0134562291. [Google Scholar]
- Mao, W.; Li, J.; Huang, Z.; Liu, J. Bearing dynamic parameters identification for a sliding bearing-rotor system with uncertainty. Inverse Probl. Sci. Eng. 2017, 26, 1094–1108. [Google Scholar] [CrossRef]
- Chen, C.; Jing, J.; Cong, J.; Dai, Z. Identification of dynamic coefficients in circular journal bearings from unbalance response and complementary equations. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 233, 1016–1028. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, J.; Shao, H.; Hu, J. Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy. Reliab. Eng. Syst. Saf. 2023, 236, 109246. [Google Scholar] [CrossRef]
- Puerto-Santana, C.; Ocampo-Martinez, C.; Diaz-Rozo, J. Mechanical rotor unbalance monitoring based on system identification and signal processing approaches. J. Sound Vib. 2022, 541, 117313. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, F.; Shao, H. A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains. Knowl. Based Syst. 2023, 262, 110203. [Google Scholar] [CrossRef]
- Shrivastava, A.; Mohanty, A.R. Identification of unbalance in a rotor system using a joint input-state estimation technique. J. Sound Vib. 2018, 442, 414–427. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, R.; Sugita, N.; Mao, J.; Shinshi, T. Identification of Bearing Dynamic Parameters and Unbalanced Forces in a Flexible Rotor System Supported by Oil-Film Bearings and Active Magnetic Devices. Actuators 2021, 10, 216. [Google Scholar] [CrossRef]
- Ocampo, J.C.; Wing, E.S.G.; Moroyoqui, F.J.R.; Pliego, A.A.; Ortega, A.B.; Mayén, J. A novel methodology for the angular position identification of the unbalance force on asymmetric rotors by response polar plot analysis. Mech. Syst. Signal Process. 2017, 95, 172–186. [Google Scholar] [CrossRef]
- Yao, J.; Liu, L.; Yang, F.; Scarpa, F.; Gao, J. Identification and optimization of unbalance parameters in rotor-bearing systems. J. Sound Vib. 2018, 431, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Luo, Z.; He, F.; Sun, K.; Yan, X. Experimental and numerical investigations on an unbalance identification method for full-size rotor system based on scaled model. J. Sound Vib. 2022, 527, 116868. [Google Scholar] [CrossRef]
- Wang, A.; Yao, W.; He, K.; Meng, G.; Cheng, X.; Yang, J. Analytical Modelling and Numerical Experiment for Simultaneous Identification of Unbalance and Rolling-Bearing Coefficients of the Continous Single-Disc and Single-Span Ro-tor-Bearing System with Rayleigh Beam Model. Mech. Syst. Signal Process. 2019, 116, 322–346. [Google Scholar] [CrossRef]
- On, S.Y.; Kim, Y.S.; You, J.I.; Lim, J.W.; Kim, S.S. Dynamic characteristics of composite tilting pad journal bearing for turbine/generator applications. Compos. Struct. 2018, 201, 747–759. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Di, L.; Zhao, C. Active magnetic bearings dynamic parameters identification from experimental rotor unbalance response. Mech. Syst. Signal Process. 2017, 83, 228–240. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Lin, Z.; Jin, C. Identification of dynamic parameters of active magnetic bearings in a flexible rotor system considering residual unbalances. Mechatronics 2018, 49, 46–55. [Google Scholar] [CrossRef]
- Varnusfaderani, M.A.; Parizi, M.I.; Hemmatian, M.; Ohadi, A. Experimental parameters identification of a flexible rotor system equipped with smart magneto-rheological bearing. Mechatronics 2022, 87, 102880. [Google Scholar] [CrossRef]
- Guenat, E.; Schiffmann, J. Dynamic force coefficients identification on air-lubricated herringbone grooved journal bearing. Mech. Syst. Signal Process. 2019, 136, 106498. [Google Scholar] [CrossRef]
- Sadiq, M.I.; Ghopa, W.A.W.; Nuawi, M.Z.; Rasani, M.R.; Khamis, N.K.; Abu Mansor, M.R. Investigation of stiffness and damping coefficients in fluid film bearing with bio-oils and mineral-based oil. Energy Rep. 2022, 8 (Suppl. S9), 419–429. [Google Scholar] [CrossRef]
- Sayed, H.; El-Sayed, T. Nonlinear dynamics and bifurcation analysis of journal bearings based on second order stiffness and damping coefficients. Int. J. Non-Linear Mech. 2022, 142, 103972. [Google Scholar] [CrossRef]
- Fliess, M.; Sira–Ramírez, H. An algebraic framework for linear identification. ESAIM Control Optim. Calc. Var. 2003, 9, 151–168. [Google Scholar] [CrossRef]
- Mendoza-Larios, J.G.; Barredo, E.; Arias-Montiel, M.; Baltazar-Tadeo, L.A.; Landa-Damas, S.J.; Tapia-Herrera, R.; Colín-Ocampo, J. An Algebraic Approach for Identification of Rotordynamic Parameters in Bearings with Linearized Force Coefficients. Mathematics 2021, 9, 2747. [Google Scholar] [CrossRef]
- Baltazar-Tadeo, L.A.; Colín-Ocampo, J.; Mendoza-Larios, J.G.; Abúndez-Pliego, A.; Nango-Blanco, M.; Blanco-Ortega, A.; Landa-Damas, S.J. An Integrated Balancing Method for Asymmetric Rotor-Bearing Systems: Algebraic Identification, Modal Balancing, and Active Balancing Disks. J. Vib. Eng. Technol. 2022, 11, 619–645. [Google Scholar] [CrossRef]
- Nango, B.M. Identificación Algebraica en Línea de Parámetros para el Balanceo de rotores Asimétricos. Master’s Thesis, Tesis de Maestría en Ciencias en Ingeniería Mecánica, CENIDET, Tecnológico Nacional de México, Cuernavaca, Mexico, 2015. [Google Scholar]
- Carvajal, F.B.; Navarro, G.S.; Ramíres, H.S.; Ortega, A.B. Active Vibration Control Using On-Line Algebraic Identification and Sliding Modes. Comput. Y Sist. 2010, 13, 313–330. [Google Scholar]
- Arias, M.M.; Carvajal, F.B.; Navarro, G.S. On-Line Algebric Identification of Eccentricity Parameters in Active Rotor-Bearing Systems. Int. J. Mech. Sci. 2014, 85, 152–159. [Google Scholar] [CrossRef]
- Mendoza Larios, J.G.; Colín Ocampo, J.; Blanco Ortega, A.; Abúndez Pliego, A.; Gutiérez Wing, E.S. Balanceo Automatico de un Sistema Rotor-Cojinete: Identificador Algebraico en Línea del Desbalance Para un Sistema Rotodinámico (Automatic Balancing of a Rotor-Bearing On-Line Algebraic Identifier for a Rotordynamic Balancing System). Rev. Iberoam. Autom. Inform. Ind. RIAI 2016, 13, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Lalanne, M.; Ferraris, G. Rotordynamics Prediction in Engineering; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1990; ISBN 0471926337. [Google Scholar]
- Kim, Y.-H.; Yang, B.-S.; Tan, A.C.C. Bearing parameter identification of rotor–bearing system using clustering-based hybrid evolutionary algorithm. Struct. Multidiscip. Optim. 2006, 33, 493–506. [Google Scholar] [CrossRef]
- Shiffman, D. The Nature of Code: Simulating Natural Systems with Processing, 1st ed.; 2012; Available online: https://freecomputerbooks.com/The-Nature-of-Code-Simulating-Natural-Systems-with-Processing.html (accessed on 1 June 2023).
Mechanical Properties | Geometrical Properties of the Shaft | Geometrical Properties of the Disk | |
---|---|---|---|
Speed (rpm) | ||||||||
---|---|---|---|---|---|---|---|---|
1200 | 2.30 × 105 | 15.19 | 5.67 × 105 | 13.37 | 3.34 × 102 | 11.36 | 8.38 × 102 | 11.79 |
2400 | 1.57 × 105 | 21.52 | 4.54 × 105 | 9.21 | 2.96 × 102 | 1.38 | 7.38 × 102 | 1.73 |
2800 | 1.30 × 105 | 34.95 | 4.01 × 105 | 19.72 | 3.01 × 102 | 1.97 | 6.98 × 102 | 7.03 |
Mechanical Properties | Geometrical Properties of the Shaft | Geometrical Properties of the Disk | |
---|---|---|---|
Property | Assumed Value |
---|---|
Diameter | 25.4 mm |
Length | 25.4 mm |
Length-to-diameter ratio | 1 |
Radial clearance | 0.16 mm |
Diameter () of the fluid injection ports () | 2 mm |
Speed (rpm) | ||||||||
---|---|---|---|---|---|---|---|---|
AI | GA | AI | GA | AI | GA | AI | GA | |
600 | 1.86 × 105 | 1.98 × 105 | 4.52 × 105 | 1.84 × 105 | 1.24 × 103 | 1.48 × 102 | 1.51 × 104 | 1.45 × 104 |
1200 | 1.80 × 105 | 2.18 × 105 | 8.27 × 105 | 9.69 × 105 | 1.13 × 103 | 3.45 × 101 | 3.74 × 103 | 2.55 × 102 |
2400 | 5.14 × 105 | 5.19 × 105 | 6.92 × 105 | 6.03 × 105 | 9.32 × 101 | 5.20 × 102 | 9.29 × 102 | 3.15 × 102 |
3000 | 8.87 × 105 | 1.38 × 106 | 9.07 × 105 | 1.58 × 106 | 1.02 × 103 | 6.00 × 102 | 1.53 × 103 | 1.25 × 101 |
4200 | 2.99 × 105 | 9.78 × 105 | 3.67 × 105 | 7.93 × 105 | 8.45 × 102 | 6.76 × 102 | 1.10 × 103 | 8.90 × 102 |
4800 | 3.58 × 105 | 1.43 × 104 | 5.02 × 105 | 1.01 × 104 | 1.08 × 103 | 9.30 × 102 | 8.40 × 102 | 9.07 × 102 |
5040 | 5.37 × 105 | 2.08 × 105 | 6.85 × 105 | 6.35 × 105 | 6.93 × 102 | 7.76 × 102 | 8.03 × 102 | 9.44 × 102 |
6000 | 1.65 × 106 | 1.46 × 106 | 2.14 × 106 | 1.94 × 106 | 6.05 × 102 | 9.30 × 103 | 4.58 × 102 | 9.84 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landa-Damas, S.J.; Colín-Ocampo, J.; Blanco-Ortega, A.; Abúndez-Pliego, A.; Mendoza-Larios, J.G.; Baltazar-Tadeo, L.A.; Pérez-Vigueras, D. A Simplified Model for the On-Line Identification of Bearing Direct-Dynamic Parameters Based on Algebraic Identification (AI). Mathematics 2023, 11, 3131. https://doi.org/10.3390/math11143131
Landa-Damas SJ, Colín-Ocampo J, Blanco-Ortega A, Abúndez-Pliego A, Mendoza-Larios JG, Baltazar-Tadeo LA, Pérez-Vigueras D. A Simplified Model for the On-Line Identification of Bearing Direct-Dynamic Parameters Based on Algebraic Identification (AI). Mathematics. 2023; 11(14):3131. https://doi.org/10.3390/math11143131
Chicago/Turabian StyleLanda-Damas, Saulo Jesús, Jorge Colín-Ocampo, Andrés Blanco-Ortega, Arturo Abúndez-Pliego, José Gabriel Mendoza-Larios, Luis Alberto Baltazar-Tadeo, and Demetrio Pérez-Vigueras. 2023. "A Simplified Model for the On-Line Identification of Bearing Direct-Dynamic Parameters Based on Algebraic Identification (AI)" Mathematics 11, no. 14: 3131. https://doi.org/10.3390/math11143131
APA StyleLanda-Damas, S. J., Colín-Ocampo, J., Blanco-Ortega, A., Abúndez-Pliego, A., Mendoza-Larios, J. G., Baltazar-Tadeo, L. A., & Pérez-Vigueras, D. (2023). A Simplified Model for the On-Line Identification of Bearing Direct-Dynamic Parameters Based on Algebraic Identification (AI). Mathematics, 11(14), 3131. https://doi.org/10.3390/math11143131