A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration
Abstract
:1. Introduction
2. Related Work
2.1. Variants of RCPSP on Different Resources Consideration
2.2. Existing RCPSP Applications Considering Inventory
3. RCPSP-IR Modeling for the Distributed Production Scheduling of Civil Aircraft
3.1. Introduction of Civil Aircraft Production Process
3.2. Formulization of RCPSP-IR
- Upstream suppliers and manufacturing departments provide materials regularly and quantitatively;
- Each type of material has its own supply quantity and supply cycle;
- The whole production process of a civil aircraft can be decomposed into many procedures;
- Each procedure must only be started after the completion of its predecessor procedure, and takes a certain amount of time to complete;
- No cycle during the production. In other words, the AON graph is a DAG;
- The AON graph is a connected graph;
- Supply disruptions or production breakdown caused by external factors, like quality issues, human error, and sudden fault, are not considered;
- Working hour is the time unit of this model.
4. RCPSP-IR Solving Based on GA
4.1. Precedence Constraints
4.2. Resource Constraints Considering Inventory Replenishment
4.2.1. Static Penalty
4.2.2. Dynamic Penalty
4.2.3. Adaptive Penalty
4.3. Prevention of Local Optima
Algorithm 1 Overview of GA in this article | ||
1: | Define the selection mechanism, the crossover mechanism, the mutation mechanism. | |
2: | Define the extinction countdown . | |
3: | Initialize the population P and maximum iteration episodes . | |
4: | For each individual in , calculate the fitness . | |
5: | for : | |
(a) | Select from to obtain a new population according to the selection mechanism. | |
(b) | for each pair of individuals in , with a crossover probability: Crossover to obtain offspring according to the crossover mechanism. Replace with . end for | |
(c) | for each individual in , with a mutation probability: Mutate to get solution according to the mutation mechanism Replace with . end for | |
(d) | Recalculate the fitness of each individual in . | |
(e) | Obtain the current optimal feasible solution from . If the fitness of the current optimal feasible solution is not getting improved for generations, remove all optimal feasible individuals from , and recalculate the fitness of each individual in . | |
(f) | Replace with . | |
end for | ||
6: | Return the optimal feasible solution O in population P. |
5. Case Study and Analysis
5.1. Case Discription
5.2. Computatoin Environment and Basic Configuration
5.3. Experimental Results
5.3.1. Comparison of Penalty Methods
5.3.2. Effect of Extinction Countdown
6. Discussion
7. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Material Identifier | Category | Replenishment Period (h) | Replenishment Quantity |
---|---|---|---|
C01 | structural part | 100 | 1 |
C02 | structural part | 20 | 4 |
E01 | structural part | 80 | 3 |
F01 | structural part | 80 | 2 |
H01 | structural part | 203 | 1 |
H02 | structural part | 15 | 5 |
H03 | structural part | 237 | 1 |
H04 | standard part | 100 | 100 |
J01 | standard part | 400 | 30 |
M01 | standard part | 2 | 2 |
R01 | structural part | 408 | 1 |
S01 | standard part | 75 | 8 |
S02 | raw material | 10 | 154 |
X01 | standard part | 9 | 54 |
X02 | standard part | 70 | 12 |
B01 | raw material | 2 | 1200 |
A01 | structural part | 165 | 1 |
Material Identifier | Category | Replenishment Period (h) | Replenishment Quantity |
---|---|---|---|
C01 | structural part | 200 | 1 |
C02 | structural part | 40 | 4 |
E01 | structural part | 160 | 3 |
F01 | structural part | 160 | 2 |
H01 | structural part | 406 | 1 |
H02 | structural part | 30 | 5 |
H03 | structural part | 474 | 1 |
H04 | standard part | 200 | 100 |
J01 | standard part | 800 | 30 |
M01 | standard part | 4 | 2 |
R01 | structural part | 816 | 1 |
S01 | standard part | 150 | 8 |
S02 | raw material | 20 | 154 |
X01 | standard part | 18 | 54 |
X02 | standard part | 140 | 12 |
B01 | raw material | 4 | 1200 |
A01 | structural part | 330 | 1 |
Material Identifier | Category | Replenishment Period (h) | Replenishment Quantity |
---|---|---|---|
C01 | structural part | 100 | 1 |
C02 | structural part | 20 | 2 |
E01 | structural part | 80 | 2 |
F01 | structural part | 80 | 1 |
H01 | structural part | 203 | 1 |
H02 | structural part | 15 | 3 |
H03 | structural part | 237 | 1 |
H04 | standard part | 100 | 50 |
J01 | standard part | 400 | 15 |
M01 | standard part | 2 | 1 |
R01 | structural part | 408 | 1 |
S01 | standard part | 75 | 4 |
S02 | raw material | 10 | 77 |
X01 | standard part | 9 | 27 |
X02 | standard part | 70 | 6 |
B01 | raw material | 2 | 600 |
A01 | structural part | 165 | 1 |
Material Identifier | Category | Replenishment Period (h) | Replenishment Quantity |
---|---|---|---|
C01 | structural part | 50 | 1 |
C02 | structural part | 10 | 4 |
E01 | structural part | 40 | 3 |
F01 | structural part | 40 | 2 |
H01 | structural part | 101 | 1 |
H02 | structural part | 8 | 5 |
H03 | structural part | 120 | 1 |
H04 | standard part | 50 | 100 |
J01 | standard part | 200 | 30 |
M01 | standard part | 1 | 2 |
R01 | structural part | 204 | 1 |
S01 | standard part | 40 | 8 |
S02 | raw material | 5 | 154 |
X01 | standard part | 5 | 54 |
X02 | standard part | 35 | 12 |
B01 | raw material | 1 | 1200 |
A01 | structural part | 80 | 1 |
Material Identifier | Category | Replenishment Period (h) | Replenishment Quantity |
---|---|---|---|
C01 | structural part | 100 | 2 |
C02 | structural part | 20 | 8 |
E01 | structural part | 80 | 6 |
F01 | structural part | 80 | 4 |
H01 | structural part | 203 | 2 |
H02 | structural part | 15 | 10 |
H03 | structural part | 237 | 2 |
H04 | standard part | 100 | 200 |
J01 | standard part | 400 | 60 |
M01 | standard part | 2 | 4 |
R01 | structural part | 408 | 2 |
S01 | standard part | 75 | 16 |
S02 | raw material | 10 | 300 |
X01 | standard part | 9 | 112 |
X02 | standard part | 70 | 25 |
B01 | raw material | 2 | 2000 |
A01 | structural part | 165 | 2 |
References
- Guzman, E.; Andres, B.; Poler, R. Models and algorithms for production planning, scheduling and sequencing problems: A holistic framework and a systematic review. J. Ind. Inf. Integr. 2022, 27, 100287. [Google Scholar] [CrossRef]
- Lohmer, J.; Lasch, R. Production planning and scheduling in multi-factory production networks: A systematic literature review. Int. J. Prod. Res. 2021, 59, 2028–2054. [Google Scholar] [CrossRef]
- Beheshtinia, M.A.; Ghasemi, A. A multi-objective and integrated model for supply chain scheduling optimization in a multi-site manufacturing system. Eng. Optim. 2018, 50, 1415–1433. [Google Scholar] [CrossRef]
- Beheshtinia, M.A.; Ghasemi, A.; Farokhnia, M. Supply chain scheduling and routing in multi-site manufacturing system (case study: A drug manufacturing company). J. Model. Manag. 2018, 13, 27–49. [Google Scholar] [CrossRef]
- Maaoui, A.; Abdellatif, A.; Telmoudi, A.J.; Gattoufi, S.; Nabli, L. Multi-Site Manufacturing System Scheduling Using Petri Nets; IEEE: Piscataway, NJ, USA, 2018; pp. 469–474. [Google Scholar] [CrossRef]
- Chen, R.; Lu, J.; Zhang, H.; Xia, L. Research on scheduling problem of discrete manufacturing workshop for major equipment in complicated environment. Mater. Sci. Eng. 2019, 688, 055048. [Google Scholar] [CrossRef]
- Shan, S.; Hu, Z.; Liu, Z.; Shi, J.; Wang, L.; Bi, Z. An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly. Inf. Technol. Manag. 2017, 18, 41–53. [Google Scholar] [CrossRef]
- Lovato, D.; Guillaume, R.; Thierry, C.; Battaia, O. Managing disruptions in aircraft assembly lines with staircase criteria. Int. J. Prod. Res. 2023, 61, 632–648. [Google Scholar] [CrossRef]
- Lu, Z.; Ren, Y.; Wang, L.; Zhu, H. A resource investment problem based on project splitting with time windows for aircraft moving assembly line. Comput. Ind. Eng. 2019, 135, 568–581. [Google Scholar] [CrossRef]
- Hartmann, S.; Briskorn, D. An updated survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 2022, 297, 1–14. [Google Scholar] [CrossRef]
- Ratajczak-Ropel, E.; Skakovski, A. Population-Based Approaches to the Resource-Constrained and Discrete-Continuous Scheduling; Springer: Berlin, Germany, 2018. [Google Scholar]
- Bartels, J.-H.; Gather, T.; Zimmermann, J. Dismantling of nuclear power plants at optimal NPV. Ann. Oper. Res. 2011, 186, 407–427. [Google Scholar] [CrossRef]
- Hartmann, S. Project scheduling with resource capacities and requests varying with time: A case study. Flex. Serv. Manuf. J. 2013, 25, 74–93. [Google Scholar] [CrossRef]
- Hartmann, S. Time-varying resource requirements and capacities. Handb. Proj. Manag. Sched. 2015, 1, 163–176. [Google Scholar]
- Hosseinian, A.H.; Baradaran, V.; Bashiri, M. Modeling of the time-dependent multi-skilled RCPSP considering learning effect: An evolutionary solution approach. J. Model. Manag. 2019, 14, 521–558. [Google Scholar] [CrossRef]
- Beşikci, U.; Bilge, Ü.; Ulusoy, G. Multi-mode resource constrained multi-project scheduling and resource portfolio problem. Eur. J. Oper. Res. 2015, 240, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Habibi, F.; Barzinpour, F.; Sadjadi, S.J. A mathematical model for project scheduling and material ordering problem with sustainability considerations: A case study in Iran. Comput. Ind. Eng. 2019, 128, 690–710. [Google Scholar] [CrossRef]
- Patoghi, A.; Mousavi, S.M. A new approach for material ordering and multi-mode resource constraint project scheduling problem in a multi-site context under interval-valued fuzzy uncertainty. Technol. Forecast. Soc. Chang. 2021, 173, 121137. [Google Scholar] [CrossRef]
- Tabrizi, B.H. Integrated planning of project scheduling and material procurement considering the environmental impacts. Comput. Ind. Eng. 2018, 120, 103–115. [Google Scholar] [CrossRef]
- Zoraghi, N.; Shahsavar, A.; Niaki, S.T.A. A hybrid project scheduling and material ordering problem: Modeling and solution algorithms. Appl. Soft Comput. 2017, 58, 700–713. [Google Scholar] [CrossRef]
- Fu, F. Integrated scheduling and batch ordering for construction project. Appl. Math. Model. 2014, 38, 784–797. [Google Scholar] [CrossRef]
- Coello, C.A.C. Constraint-Handling Techniques Used with Evolutionary Algorithms; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1310–1333. [Google Scholar]
- Tessema, B.; Yen, G.G. An adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2009, 39, 565–578. [Google Scholar] [CrossRef]
- Dang, D.C.; Friedrich, T.; Kötzing, T.; Krejca, M.S.; Lehre, P.K.; Oliveto, P.S.; Sudholt, D.; Sutton, A.M. Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 2017, 22, 484–497. [Google Scholar] [CrossRef] [Green Version]
RCPSP | RCPSP-IR |
---|---|
Model input does not include material inventory replenishment and consumption. | Model input includes material inventory replenishment and consumption. |
Poor ability to describe situations where inventory is insufficient. | Can describe the situation of insufficient inventory. Making it possible to efficiently schedule production. |
Symbol | Definition | |
---|---|---|
Sets | Set of structural parts | |
Set of standard parts | ||
Set of raw materials | ||
Set of the procedures | ||
Notations | Numbers of materials, | |
Numbers of procedure in the station, | ||
The th hour during the production process | ||
A solution of the problem | ||
Parameters of the problem | The inventory quantity of material (or , ) at the hour | |
The inventory replenishment quantity of material (or , ) per time | ||
Inventory replenishment period of material (or , ) | ||
Time needed for procedure to finish | ||
Amount of materialrequired to start procedure | ||
Variables | Decision variables. The start time of procedure | |
The completion time of procedure | ||
Time difference between and the latest completion time of ‘s pre-procedure | ||
Boolean value describing whether material is replenished at | ||
Boolean value describing whether procedure starts at | ||
The inventory constraint violation value of material (or , ) at | ||
Symbols related to GA | Violation of constraints by solution | |
Fitness function of solution | ||
The population of GA | ||
The proportion of feasible solutions in population | ||
The generation of GA. | ||
Number of resource constraint inequalities | ||
Constant values | ||
Extinction countdown | ||
The time objective function | ||
Objective equals to the end time of the last completed task |
Material Identifier | Category | Replenishment Period (h) | Replenishment Quantity |
---|---|---|---|
C01 | structural part | 100 | 1 |
C02 | structural part | 20 | 4 |
E01 | structural part | 80 | 3 |
F01 | structural part | 80 | 2 |
H01 | structural part | 203 | 1 |
H02 | structural part | 15 | 5 |
H03 | structural part | 237 | 1 |
H04 | standard part | 100 | 100 |
J01 | standard part | 400 | 30 |
M01 | standard part | 2 | 2 |
R01 | structural part | 408 | 1 |
S01 | standard part | 75 | 8 |
S02 | raw material | 10 | 154 |
X01 | standard part | 9 | 54 |
X02 | standard part | 70 | 12 |
B01 | raw material | 2 | 1200 |
A01 | structural part | 165 | 1 |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PD1 | PD2 | 11 | None |
PD2 | PD3, PD4, PD5, PD6, PD7, PD8, PD9, PD10, PD11 | 15 | F01(7), S02(14), X01(13), X02(8), B01(2400) |
PD3 | None | 18 | E01(2), S02(16), X01(2), X02(9), B01(3323) |
PD4 | None | 5 | X01(2), B01(2564) |
PD5 | None | 1 | F01(7), S02(27), X01(13), X02(8), B01(2425) |
PD6 | None | 3 | E01(2), S02(15), X01(2), X02(9), B01(2747) |
PD7 | None | 1 | X01(2), B01(2397) |
PD8 | None | 9 | S02(1), X01(2), X02(2), B01(133) |
PD9 | None | 7 | None |
PD10 | None | 14 | S02(1), X01(2), X02(2), B01(133) |
PD11 | None | 11 | None |
PD12 | PD13 | 27 | S02(10), B01(11,400) |
PD13 | PD14, PD15, PD16, PD17, PD18, PD19, PD20, PD21 | 6 | B01(1820) |
PD14 | None | 22 | B01(3000) |
PD15 | None | 9 | B01(12,533) |
PD16 | None | 13 | None |
PD17 | None | 5 | B01(760) |
PD18 | None | 5 | B01(2403) |
PD19 | None | 15 | B01(2204) |
PD20 | None | 13 | B01(2608) |
PD21 | None | 8 | B01(200) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PL1 | PD2 | 27 | X01(60), B01(712) |
PL2 | PL3, PL4, PL5, PL6, PL7, PL8, PL9 | 13 | None |
PL3 | PD2, PD13 | 13 | None |
PL4 | None | 17 | None |
PL5 | None | 21 | F01(7), S02(27), X01(13), X02(8), B01(2425) |
PL6 | None | 32 | E01(2), S02(15), X01(2), X02(9), B01(2747) |
PL7 | None | 16 | X01(2), B01(2397) |
PL8 | None | 31 | S02(1), X01(2), X02(2), B01(133) |
PL9 | None | 31 | None |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PH1 | PH2 | 36 | None |
PH2 | PH3, PH4, PH5 | 21 | H04(153), J01(1), B01(6832) |
PH3 | None | 23 | B01(14,374) |
PH4 | None | 1 | H04(408) |
PH5 | None | 8 | H04(5), S01(1) |
PH6 | PH7 | 19 | None |
PH7 | PH8, PH9, PH10, PH11 | 36 | C02(7), B01(20,000) |
PH8 | None | 21 | S02(25), B01(9589) |
PH9 | None | 23 | B01(3624) |
PH10 | None | 1 | C02(6), H02(4), S02(4), B01(2900) |
PH11 | None | 4 | J01(3), B01(3200) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PP1 | PH2 | 23 | None |
PP2 | PP3, PP4, PP5, PP6, PP7, PP8, PP9 | 14 | M01(247), B01(3600) |
PP3 | PL2, PH2, PH7 | 21 | M01(188), B01(3652) |
PP4 | None | 31 | B01(5972) |
PP5 | None | 18 | B01(6668), A01(2) |
PP6 | None | 27 | B01(560) |
PP7 | None | 18 | None |
PP8 | None | 19 | None |
PP9 | None | 15 | B01(160) |
PP10 | PP11 | 18 | C02(14), H04(55), B01(93) |
PP11 | PP12, PP13, PP14, PP15, PP16, PP17 | 27 | C02(149), H04(54), B01(5755) |
PP12 | PP2 | 18 | H04(8), B01(9) |
PP13 | None | 19 | H02(12), H04(20), X01(11), B01(999) |
PP14 | None | 15 | C02(4), H04(369), J01(40), B01(5000) |
PP15 | None | 13 | H04(4), X01(10), B01(7980) |
PP16 | None | 4 | H04(18), X01(36), B01(6374) |
PP17 | None | 5 | C02(1), H04(1) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PB1 | PB2 | 13 | None |
PB2 | PB3, PB4 | 17 | B01(241) |
PB3 | None | 5 | S02(7), B01(1130) |
PB4 | None | 5 | S01(1), B01(12) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PW1 | PW2 | 18 | None |
PW2 | PW3, PW4, PW5, PW6, PW7, PW8, PW9 | 15 | F01(7), S02(14), X01(13), X02(8), B01(2400) |
PW3 | None | 15 | E01(2), S02(16), X01(2), X02(9), B01(3323) |
PW4 | None | 8 | X01(2), B01(2564) |
PW5 | None | 6 | F01(7), S02(27), X01(13), X02(8), B01(2425) |
PW6 | None | 6 | E01(2), S02(15), X01(2), X02(9), B01(2747) |
PW7 | None | 1 | X01(2), B01(2397) |
PW8 | None | 9 | S02(1), X01(2), X02(2), B01(133) |
PW9 | None | 14 | None |
PW10 | PW11 | 5 | B01(30) |
PW11 | None | 5 | B01(5402) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PS1 | None | 13 | B01(348) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PT1 | PD2 | 31 | None |
PT2 | PT3, PT4, PT5, PT6, PT7, PT8, PT9, PT10, PT11, PT12, PT13, PT14, PT15 | 19 | H01(4), S02(1), X01(10), B01(3700) |
PT3 | PP11, PW2, PW11, PB2 | 23 | C02(5), B01(151) |
PT4 | None | 14 | C02(2), B01(883) |
PT5 | None | 21 | S01(52), B01(1080) |
PT6 | None | 31 | X01(51), X02(26), B01(1500) |
PT7 | None | 18 | H02(29), X01(38), B01(2995) |
PT8 | None | 27 | S01(10), S02(4), B01(315) |
PT9 | None | 18 | S02(2), B01(438) |
PT10 | None | 19 | C01(8), S01(8), B01(1274) |
PT11 | None | 15 | C01(1), B01(1484) |
PT12 | None | 13 | X01(51), X02(14), B01(4756) |
PT13 | None | 4 | X01(28), B01(16) |
PT14 | None | 5 | X01(2), B01(16) |
PT15 | None | 12 | S01(4), B01(197) |
PT16 | PT17 | 25 | None |
PT17 | PT18, PT19, PT20, PT21, PT22, PT23, PT24, PT25 | 23 | B01(61) |
PT18 | PT2 | 19 | None |
PT19 | None | 36 | S01(4), X01(1), B01(5300) |
PT20 | None | 21 | H02(232), H03(3), H04(21), X01(41), B01(9500) |
PT21 | None | 23 | X01(4), B01(7900) |
PT22 | None | 1 | None |
PT23 | None | 8 | B01(4300) |
PT24 | None | 21 | S02(2), B01(1869), A01(3) |
PT25 | None | 6 | B01(64) |
PT26 | PT27 | 15 | S02(28), B01(20,000) |
PT27 | PT28, PT29, PT30 | 27 | S02(127), B01(20,000) |
PT28 | PT17 | 13 | S02(15), B01(7274) |
PT29 | None | 13 | S02(1), B01(1590) |
PT30 | None | 17 | M01(8), S02(14,000) |
PT31 | PT32 | 21 | H02(20), B01(12,400) |
PT32 | PT33, PT34, PT35 | 32 | E01(10), B01(4400) |
PT33 | PT27 | 16 | E01(19), B01(4000) |
PT34 | None | 31 | B01(3300) |
PT35 | None | 31 | B01(3600) |
PT36 | PT37 | 11 | B01(19) |
PT37 | PT38, PT39, PT40 | 25 | H02(1), B01(33,000) |
PT38 | PT32 | 26 | C02(33), R01(1), B01(2800) |
PT39 | None | 29 | B01(2168) |
PT40 | None | 14 | C02(8), B01(115) |
PT41 | PT42 | 21 | B01(20) |
PT42 | PT43, PT44, PT45 | 14 | None |
PT43 | PT37 | 19 | S01(8), B01(1400) |
PT44 | None | 17 | B01(5000) |
PT45 | None | 19 | B01(48) |
Procedure | Predecessor Procedures | Duration (h) | Required Material Type and Amount |
---|---|---|---|
PE1 | PE2 | 9 | None |
PE2 | PT42 | 14 | S01(7), B01(3300) |
PE3 | PE4 | 18 | B01(97) |
PE4 | PE5, PE6, PE7 | 18 | H04(3), M01(229), B01(6000) |
PE5 | PS1 | 15 | B01(17,000) |
PE6 | None | 15 | H04(23), S02(4), B01(87,000) |
PE7 | None | 8 | B01(67) |
PE8 | PE9 | 6 | None |
PE9 | PE10 | 6 | None |
PE10 | PE2, PE4 | 1 | None |
PE11 | PE12 | 20 | B01(4) |
PE12 | PE13, PE14, PE15 | 20 | M01(4), B01(193) |
PE13 | PE10 | 20 | None |
PE14 | None | 20 | M01(51), B01(524) |
PE15 | None | 20 | B01(34) |
Parameter | Configuration |
---|---|
Population size | 300 |
Maximum iterations | 30 K |
Cross function | Two-point cross |
Cross rate | 0.3 |
Selection function | Tournament selection |
Selection size | 2 |
Mutation function | Uniform mutation |
Mutation rate | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Zhang, D.; Lu, H.; Li, R. A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration. Mathematics 2023, 11, 3135. https://doi.org/10.3390/math11143135
Qi X, Zhang D, Lu H, Li R. A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration. Mathematics. 2023; 11(14):3135. https://doi.org/10.3390/math11143135
Chicago/Turabian StyleQi, Xumai, Dongdong Zhang, Hu Lu, and Rupeng Li. 2023. "A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration" Mathematics 11, no. 14: 3135. https://doi.org/10.3390/math11143135
APA StyleQi, X., Zhang, D., Lu, H., & Li, R. (2023). A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration. Mathematics, 11(14), 3135. https://doi.org/10.3390/math11143135