A More Fine-Grained Aspect–Sentiment–Opinion Triplet Extraction Task
Abstract
:1. Introduction
- We introduce a new aspect-based sentiment analysis subtask: Aspect–Sentiment–Opinion Triplet Extraction (ASOTE).
- We build four datasets for ASOTE and release the datasets for public use as a benchmark.
- We propose a Position-aware BERT-based Framework (PBF) to address ASOTE.
- In the experiments on the four datasets, PBF has set a benchmark performance on the novel ASOTE task.
2. Related Work
3. Dataset Construction
4. Method
4.1. Task Definition
4.2. PBF
4.3. Input
4.4. ATE
4.5. TOWE
4.6. AOPSC
5. Experiments
5.1. Datasets and Metrics
5.2. Our Methods
5.3. Implementation Details
5.4. Exp-I: ASOTE
5.4.1. Comparison Methods
5.4.2. Results
5.4.3. Case Study
5.5. Exp-II: TOWE
5.5.1. Comparison Methods
5.5.2. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nasukawa, T.; Yi, J. Sentiment Analysis: Capturing Favorability Using Natural Language Processing. In Proceedings of the 2nd International Conference on Knowledge Capture, K-CAP ’03, Island, FL, USA, 23–25 October 2003; Association for Computing Machinery: New York, NY, USA, 2003; pp. 70–77. [Google Scholar] [CrossRef]
- Liu, B. Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 2012, 5, 1–167. [Google Scholar]
- Griffin, A.; Hauser, J.R. The voice of the customer. Mark. Sci. 1993, 12, 1–27. [Google Scholar] [CrossRef]
- Barbieri, F.; Camacho-Collados, J.; Espinosa Anke, L.; Neves, L. Tweeteval: Unified Benchmark and Comparative Evaluation for Tweet Classification. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; Association for Computational Linguistics: Toronto, ON, Canada, 2020; pp. 1644–1650. [Google Scholar] [CrossRef]
- Hu, M.; Liu, B. Mining and Summarizing Customer Reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’04, Seattle, WA, USA, 22–25 August 2004; Association for Computing Machinery: New York, NY, USA, 2004; pp. 168–177. [Google Scholar] [CrossRef] [Green Version]
- Pontiki, M.; Galanis, D.; Pavlopoulos, J.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S. Semeval-2014 Task 4: Aspect Based Sentiment Analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (Semeval 2014), Dublin, Ireland, 23–24 August 2014; Association for Computational Linguistics: Dublin, Ireland, 2014; pp. 27–35. [Google Scholar] [CrossRef] [Green Version]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Manandhar, S.; Androutsopoulos, I. Semeval-2015 Task 12: Aspect Based Sentiment Analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (Semeval 2015), Denver, CO, USA, 4–5 June 2015; Association for Computational Linguistics: Denver, CO, USA, 2015; pp. 486–495. [Google Scholar] [CrossRef] [Green Version]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; AL-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; et al. Semeval-2016 Task 5: Aspect Based Sentiment Analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (Semeval-2016), San Diego, CA, USA, 16–17 June 2016; Association for Computational Linguistics: San Diego, CA, USA, 2016; pp. 19–30. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Wu, Z.; Dai, X.; Huang, S.; Chen, J. Target-oriented opinion words extraction with target-fused neural sequence labeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MO, USA, 2–7 June 2019; Association for Computational Linguistics: Minneapolis, MO, USA, 2019; pp. 2509–2518. [Google Scholar]
- Peng, H.; Xu, L.; Bing, L.; Huang, F.; Lu, W.; Si, L. Knowing What, How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Wu, Z.; Zhao, F.; Dai, X.Y.; Huang, S.; Chen, J. Latent Opinions Transfer Network for Target-Oriented Opinion Words Extraction. arXiv 2020, arXiv:2001.01989. [Google Scholar] [CrossRef]
- Pouran Ben Veyseh, A.; Nouri, N.; Dernoncourt, F.; Dou, D.; Nguyen, T.H. Introducing Syntactic Structures into Target Opinion Word Extraction with Deep Learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; Association for Computational Linguistics: Toronto, ON, Canada, 2020; pp. 8947–8956. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Hou, Y.; Song, Y. A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; Association for Computational Linguistics: Santa Fe, NM, USA, 2018; pp. 774–784. [Google Scholar]
- Li, L.; Liu, Y.; Zhou, A. Hierarchical Attention Based Position-Aware Network for Aspect-Level Sentiment Analysis. In Proceedings of the 22nd Conference on Computational Natural Language Learning, Brussels, Belgium, 31 October–1 November 2018; Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 181–189. [Google Scholar] [CrossRef] [Green Version]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MO, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Yin, Y.; Wei, F.; Dong, L.; Xu, K.; Zhang, M.; Zhou, M. Unsupervised word and dependency path embeddings for aspect term extraction. arXiv 2016, arXiv:1605.07843. [Google Scholar]
- Li, X.; Bing, L.; Li, P.; Lam, W.; Yang, Z. Aspect term extraction with history attention and selective transformation. arXiv 2018, arXiv:1805.00760. [Google Scholar]
- Xu, H.; Liu, B.; Shu, L.; Philip, S.Y. Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, 15–20 July 2018; pp. 592–598. [Google Scholar]
- Wei, Z.; Hong, Y.; Zou, B.; Cheng, M.; Jianmin, Y. Don’t Eclipse Your Arts Due to Small Discrepancies: Boundary Repositioning with a Pointer Network for Aspect Extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3678–3684. [Google Scholar]
- Li, K.; Chen, C.; Quan, X.; Ling, Q.; Song, Y. Conditional Augmentation for Aspect Term Extraction via Masked Sequence-to-Sequence Generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7056–7066. [Google Scholar] [CrossRef]
- Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; Xu, K. Adaptive recursive neural network for target-dependent twitter sentiment classification. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Baltimore, MD, USA, 23–25 June 2014; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 49–54. [Google Scholar]
- Nguyen, T.H.; Shirai, K. PhraseRNN: Phrase Recursive Neural Network for Aspect-based Sentiment Analysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; Association for Computational Linguistics: Lisbon, Portugal, 2015; pp. 2509–2514. [Google Scholar] [CrossRef]
- Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for Target-Dependent Sentiment Classification. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics, Osaka, Japan, 11–16 December 2016; Technical Papers. The COLING 2016 Organizing Committee: Osaka, Japan, 2016; pp. 3298–3307. [Google Scholar]
- Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive attention networks for aspect-level sentiment classification. arXiv 2017, arXiv:1709.00893. [Google Scholar]
- Xue, W.; Li, T. Aspect Based Sentiment Analysis with Gated Convolutional Networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics: Melbourne, Australia, 2018; pp. 2514–2523. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Chen, L.; Xu, R.; Ao, X.; Yang, M. A Challenge Dataset and Effective Models for Aspect-Based Sentiment Analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Hong Kong, China, 2019; pp. 6280–6285. [Google Scholar] [CrossRef]
- Tang, H.; Ji, D.; Li, C.; Zhou, Q. Dependency Graph Enhanced Dual-transformer Structure for Aspect-based Sentiment Classification. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 6578–6588. [Google Scholar]
- Wang, K.; Shen, W.; Yang, Y.; Quan, X.; Wang, R. Relational Graph Attention Network for Aspect-based Sentiment Analysis. arXiv 2020, arXiv:2004.12362. [Google Scholar]
- Zhao, P.; Hou, L.; Wu, O. Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification. Knowl.-Based Syst. 2020, 193, 105443. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Yan, H.; Sun, T.; Liu, P.; Qiu, X. Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa. arXiv 2021, arXiv:2104.04986. [Google Scholar]
- Jiang, J.; Wang, A.; Aizawa, A. Attention-based Relational Graph Convolutional Network for Target-Oriented Opinion Words Extraction. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, Online, 19–23 April 2021; Association for Computational Linguistics: Cedarville, OH, USA, 2021; pp. 1986–1997. [Google Scholar]
- Li, X.; Bing, L.; Li, P.; Lam, W. A unified model for opinion target extraction and target sentiment prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 6714–6721. [Google Scholar]
- Phan, M.H.; Ogunbona, P.O. Modelling Context and Syntactical Features for Aspect-based Sentiment Analysis. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3211–3220. [Google Scholar]
- Wang, W.; Pan, S.J.; Dahlmeier, D.; Xiao, X. Recursive neural conditional random fields for aspect-based sentiment analysis. arXiv 2016, arXiv:1603.06679. [Google Scholar]
- Wang, W.; Pan, S.J.; Dahlmeier, D.; Xiao, X. Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Dai, H.; Song, Y. Neural Aspect and Opinion Term Extraction with Mined Rules as Weak Supervision. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 5268–5277. [Google Scholar]
- Zhao, H.; Huang, L.; Zhang, R.; Lu, Q.; Xue , H. SpanMlt: A Span-based Multi-Task Learning Framework for Pair-wise Aspect and Opinion Terms Extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3239–3248. [Google Scholar]
- Chen, S.; Liu, J.; Wang, Y.; Zhang, W.; Chi, Z. Synchronous Double-channel Recurrent Network for Aspect–Opinion Pair Extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 6515–6524. [Google Scholar]
- He, R.; Lee, W.S.; Ng, H.T.; Dahlmeier, D. An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 504–515. [Google Scholar]
- Chen, Z.; Qian, T. Relation-Aware Collaborative Learning for Unified Aspect-Based Sentiment Analysis. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3685–3694. [Google Scholar]
- Xu, L.; Li, H.; Lu, W.; Bing, L. Position-Aware Tagging for Aspect Sentiment Triplet Extraction. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; Association for Computational Linguistics: Toronto, ON, Canada, 2020; pp. 2339–2349. [Google Scholar] [CrossRef]
- Sutherland, A.; Bensch, S.; Hellström, T.; Magg, S.; Wermter, S. Tell Me Why You Feel That Way: Processing Compositional Dependency for Tree-LSTM Aspect Sentiment Triplet Extraction (TASTE). In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2020, Bratislava, Slovakia, 15–18 September 2020; Farkaš, I., Masulli, P., Wermter, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 660–671. [Google Scholar]
- Chen, P.; Chen, S.; Liu, J. Hierarchical Sequence Labeling Model for Aspect Sentiment Triplet Extraction. In Proceedings of the Natural Language Processing and Chinese Computing, Zhengzhou, China, 14–18 October 2020; Zhu, X., Zhang, M., Hong, Y., He, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 654–666. [Google Scholar]
- Wu, Z.; Ying, C.; Zhao, F.; Fan, Z.; Dai, X.; Xia, R. Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; Association for Computational Linguistics: Toronto, ON, Canada, 2020; pp. 2576–2585. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Song, D.; Wang, B. A Multi-task Learning Framework for Opinion Triplet Extraction. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; Association for Computational Linguistics: Toronto, ON, Canada, 2020; pp. 819–828. [Google Scholar] [CrossRef]
- Mao, Y.; Shen, Y.; Yu, C.; Cai, L. A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis. arXiv 2021, arXiv:2101.00816. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Liu, J.; Wang, Y. Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extraction. arXiv 2021, arXiv:2103.07665. [Google Scholar] [CrossRef]
- Stenetorp, P.; Pyysalo, S.; Topić, G.; Ohta, T.; Ananiadou, S.; Tsujii, J. brat: A Web-based Tool for NLP-Assisted Text Annotation. In Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 23–27 April 2012; Association for Computational Linguistics: Avignon, France, 2012; pp. 102–107. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.r.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yin, C.; Zhong, S.h.; Pan, X. Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment Analysis. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; Association for Computational Linguistics: Toronto, ON, Canada, 2020; pp. 3550–3560. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, D. A Frustratingly Easy Approach for Joint Entity and Relation Extraction. arXiv 2020, arXiv:2010.12812. [Google Scholar]
- Wu, S.; He, Y. Enriching pre-trained language model with entity information for relation classification. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 2361–2364. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in Pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 1 January 2021).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Dataset | #sentence | #aspects | #triplets | #zero_t | #one_t | #m_t | #d_s1 | #d_s2 | #t_d | |
---|---|---|---|---|---|---|---|---|---|---|
14res | train | 2429 | 2984 | 2499 | 1662 | 1834 | 304 | 45 | 39 | 181 |
dev | 606 | 710 | 561 | 412 | 446 | 54 | 5 | 10 | 24 | |
test | 800 | 1134 | 1030 | 464 | 720 | 144 | 14 | 9 | 42 | |
14lap | train | 2425 | 1927 | 1501 | 1868 | 1128 | 176 | 22 | 26 | 92 |
dev | 608 | 437 | 347 | 444 | 268 | 37 | 2 | 2 | 10 | |
test | 800 | 655 | 563 | 553 | 411 | 69 | 9 | 9 | 40 | |
15res | train | 1050 | 950 | 1031 | 471 | 721 | 143 | 22 | 11 | 46 |
dev | 263 | 249 | 246 | 134 | 182 | 30 | 4 | 4 | 9 | |
test | 684 | 542 | 493 | 390 | 385 | 51 | 13 | 5 | 26 | |
16res | train | 1595 | 1399 | 1431 | 793 | 1032 | 186 | 35 | 17 | 74 |
dev | 400 | 344 | 333 | 209 | 252 | 37 | 4 | 3 | 7 | |
test | 675 | 612 | 524 | 412 | 395 | 61 | 14 | 6 | 28 |
14res | 14lap | 15res | 16res | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 |
OTE-MTL | 63.8 | 52.1 | 57.3 | 51.3 | 36.8 | 42.7 | 56.3 | 44.0 | 49.3 | 58.3 | 52.4 | 55.0 |
JET | 66.0 | 48.4 | 55.8 | 41.0 | 36.5 | 38.6 | 45.3 | 47.8 | 46.5 | 58.1 | 46.9 | 51.9 |
JETo | 61.5 | 53.9 | 57.5 | 48.8 | 36.7 | 41.9 | 57.5 | 47.2 | 51.8 | 61.0 | 56.8 | 58.8 |
GTS-CNN | 66.4 | 58.5 | 62.2 | 55.3 | 37.4 | 44.6 | 56.3 | 48.1 | 51.8 | 61.4 | 60.0 | 60.5 |
GTS-BiLSTM | 71.1 | 54.5 | 61.5 | 58.0 | 33.9 | 42.8 | 67.3 | 42.9 | 52.4 | 64.6 | 55.8 | 59.8 |
JET | 65.1 | 51.7 | 57.6 | 50.2 | 41.7 | 45.5 | 50.7 | 48.2 | 49.4 | 55.0 | 52.1 | 53.5 |
JET | 66.0 | 54.5 | 59.7 | 49.7 | 42.8 | 46.0 | 53.8 | 52.9 | 53.3 | 58.3 | 60.3 | 59.2 |
GTS-BERT | 67.5 | 67.2 | 67.3 | 59.4 | 48.6 | 53.5 | 61.8 | 52.0 | 56.4 | 62.0 | 67.1 | 64.4 |
PBF | 69.3 | 69.0 | 69.2 | 56.6 | 55.1 | 55.8 | 55.8 | 61.5 | 58.5 | 61.2 | 72.7 | 66.5 |
PBF -w/o A | 67.3 | 69.3 | 68.3 | 55.9 | 55.7 | 55.8 | 56.4 | 61.6 | 58.8 | 60.7 | 71.3 | 65.5 |
PBF -w/o P | 68.6 | 69.7 | 69.1 | 56.6 | 54.8 | 55.7 | 56.2 | 60.4 | 58.2 | 59.6 | 71.8 | 65.1 |
PBF -w/o AP | 44.4 | 51.9 | 47.4 | 45.1 | 48.8 | 46.7 | 41.7 | 50.9 | 45.7 | 46.1 | 59.8 | 52.0 |
PBF-M1 | 66.6 | 69.7 | 68.1 | 58.8 | 54.1 | 56.3 | 57.8 | 59.4 | 58.4 | 59.3 | 72.1 | 65.0 |
PBF-M2 | 63.0 | 63.6 | 63.3 | 51.8 | 47.3 | 49.4 | 50.2 | 56.2 | 53.0 | 56.6 | 65.8 | 60.8 |
PBF-M3 | 66.8 | 69.2 | 68.0 | 56.8 | 53.3 | 54.9 | 54.2 | 61.7 | 57.7 | 60.4 | 71.1 | 65.2 |
Method | 14res | 14lap | 15res | 16res |
---|---|---|---|---|
GTS-BERT | 71.7 | 60.2 | 61.5 | 68.1 |
PBF | 74.0 | 63.8 | 63.9 | 70.8 |
Method | 14res | 14lap | 15res | 16res |
---|---|---|---|---|
PBF | 81.5 | 74.0 | 77.9 | 82.1 |
PBF -w/o A | 80.7 | 74.1 | 78.6 | 81.6 |
PBF -w/o P | 80.9 | 74.0 | 77.3 | 81.0 |
PBF -w/o AP | 56.1 | 61.9 | 60.5 | 64.8 |
PBF-M1 | 80.1 | 73.0 | 77.4 | 80.5 |
PBF-M2 | 75.1 | 66.1 | 72.9 | 76.5 |
PBF-M3 | 80.3 | 73.6 | 77.5 | 80.3 |
Method | 14res | 14lap | 15res | 16res |
---|---|---|---|---|
IOG | 80.0 | 71.3 | 73.2 | 81.6 |
LOTN | 82.2 | 72.0 | 73.2 | 83.6 |
ARGCN | 84.6 | 75.3 | 76.7 | 85.1 |
ARGCN | 85.4 | 76.3 | 78.2 | 86.6 |
ONG | 82.3 | 75.7 | 78.8 | 86.0 |
PBF | 85.9 | 81.5 | 80.8 | 89.2 |
PBF -w/o A | 86.1 | 81.2 | 80.4 | 87.9 |
PBF -w/o P | 86.3 | 80.3 | 79.8 | 88.8 |
PBF -w/o AP | 61.6 | 67.9 | 59.0 | 69.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, F.; Zhong, S.-h. A More Fine-Grained Aspect–Sentiment–Opinion Triplet Extraction Task. Mathematics 2023, 11, 3165. https://doi.org/10.3390/math11143165
Li Y, Wang F, Zhong S-h. A More Fine-Grained Aspect–Sentiment–Opinion Triplet Extraction Task. Mathematics. 2023; 11(14):3165. https://doi.org/10.3390/math11143165
Chicago/Turabian StyleLi, Yuncong, Fang Wang, and Sheng-hua Zhong. 2023. "A More Fine-Grained Aspect–Sentiment–Opinion Triplet Extraction Task" Mathematics 11, no. 14: 3165. https://doi.org/10.3390/math11143165
APA StyleLi, Y., Wang, F., & Zhong, S. -h. (2023). A More Fine-Grained Aspect–Sentiment–Opinion Triplet Extraction Task. Mathematics, 11(14), 3165. https://doi.org/10.3390/math11143165