A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming
Abstract
:1. Introduction
- Exploring methods to enhance the quality of input data for the model. Spearman rank correlation analysis and gray relation analysis (GRA) are used to eliminate redundant environmental factors, and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and permutation entropy are combined to reduce the noise of RH data. Feature selection and data denoising eliminate interference from redundant data.
- Proposing a deep learning model based on BiGRU and an attention mechanism to achieve effective medium and long-term point prediction of poultry house RH. Compared with common models, the BiGRU-Attention model can improve the utilization rate of multi-dimensional and long-term data, fully extract causal relationships between variables and targets, and enhance the accuracy of medium and long-term RH prediction.
- Demonstrating measures to reduce decision-making risks caused by point prediction errors. Kernel density estimation (KDE) is used to fit the errors generated by point prediction, and PI at different confidence levels is calculated to quantify the risk brought by point prediction errors. This provides regulators with more useful information.
2. Materials and Methods
2.1. Experimental Area
2.2. Preprocessing of Data
2.2.1. Missing Data Repair
2.2.2. Data Outlier Repair and Processing
2.2.3. Data Set Division
2.2.4. Data Normalization
2.3. Data Noise Reduction Method
2.3.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
2.3.2. Permutation Entropy
2.4. Feature Selection Method
2.4.1. Spearman Rank Correlation Analysis
2.4.2. Grey Relational Analysis
2.5. BiGRU-Attention Point Prediction Model
2.5.1. Gate Recurrent Unit
2.5.2. Bi-Directional Gate Recurrent Unit
2.5.3. BiGRU-Attention
2.6. Kernel Density Estimation
2.7. Model Performance Evaluation Metrics
2.7.1. Metrics for Evaluating Point Prediction
2.7.2. Metrics for Evaluating Interval Prediction
3. Results
3.1. Experimental Environment and Parameter Selection
3.2. Data Denoising Based on CEEMDAN and Permutation Entropy
3.3. Selecting Important Environmental Factors
3.4. Medium and Long-Term RH Point Prediction Based on BiGRU-Attention
3.5. Medium and Long-Term RH Interval Prediction Based on KDE-Gaussian
4. Discussion
4.1. Analysis of Model Results in Comparison Based on Feature Selection
4.2. Analysis of Model Results in Comparison Based on CEEMDAN-Based Denoising
4.3. Analysis of Results Based on the CEEMDAN-FS-BiGRU-Attention Model
4.4. Comparative Analysis of Interval Prediction Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.; Cui, D.; Zhou, M.; Ying, Y. Information perception in modern poultry farming: A review. Comput. Electron. Agric. 2022, 199, 107131. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, T.; Fang, C.; Zeng, J.; Yang, X. Design and implementation of poultry farming information management system based on cloud database. Animals 2021, 11, 900. [Google Scholar] [CrossRef]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2022, 858 Pt 3, 160014. [Google Scholar] [CrossRef]
- Li, Y.; Arulnathan, V.; Heidari, M.D.; Pelletier, N. Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions. Renew. Sustain. Energy Rev. 2022, 154, 111874. [Google Scholar] [CrossRef]
- El-Hanoun, A.M.; Rizk, R.E.; Shahein, E.H.; Hassan, N.S.; Brake, J. Effect of incubation humidity and flock age on hatchability traits and growth in Pekin ducks. Poult. Sci. 2012, 91, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Meng, Q.S.; Gao, J.; Tang, X.F.; Zhang, H.F. Effects of relative humidity on animal health and welfare. J. Integr. Agric. 2017, 16, 1653–1658. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Wang, X.J.; Feng, J.H.; Zhang, M.H.; Diao, H.J.; Zhang, S.S.; Peng, Q.Q.; Zhou, Y.; Li, M.; Li, X. Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels. Poult. Sci. 2018, 97, 3119–3125. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Er, M.; Li, L.; Wen, P.; Jia, Y.; Huo, L. Microclimate environment model construction and control strategy of enclosed laying brooder house. Poult. Sci. 2022, 101, 101843. [Google Scholar] [CrossRef]
- Pereira, W.F.; da Silva Fonseca, L.; Putti, F.F.; Góes, B.C.; de Paula Naves, L. Environmental monitoring in a poultry farm using an instrument developed with the internet of things concept. Comput. Electron. Agric. 2020, 170, 105257. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Basak, J.K.; Sihalath, T.; Park, J.; Kim, H.T.; Moon, B.E. Machine learning-based microclimate model for indoor air temperature and relative humidity prediction in a swine building. Animals 2021, 11, 222. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuang, Y.; Ji, B.; Zhang, G.; Rong, L.; Teng, G.; Wang, C. Prediction of laying hen house odor concentrations using machine learning models based on small sample data. Comput. Electron. Agric. 2022, 195, 106849. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, I.-B.; Yeo, U.-H.; Kim, J.-G.; Kim, R.-W. Machine Learning Approach to Predict Air Temperature and Relative Humidity inside Mechanically and Naturally Ventilated Duck Houses: Application of Recurrent Neural Network. Agriculture 2022, 12, 318. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Duan, Q. Piggery Ammonia Concentration Prediction Method Based on CNN-GRU. J. Phys. Conf. Ser. 2020, 1624, 042055. [Google Scholar] [CrossRef]
- Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019, 86, 83–106. [Google Scholar] [CrossRef]
- Shen, W.; Fu, X.; Wang, R.; Yin, Y.; Zhang, Y.; Singh, U.; Lkhagva, B.; Sun, J. A prediction model of NH3 concentration for swine house in cold region based on Empirical Mode Decomposition and Elman neural network. Inf. Process. Agric. 2019, 6, 297–305. [Google Scholar] [CrossRef]
- Song, L.; Wang, Y.; Zhao, B.; Liu, Y.; Mei, L.; Luo, J.; Zuo, Z.; Yi, J.; Guo, X. Research on prediction of ammonia concentration in QPSO-RBF cattle house based on KPCA nuclear principal component analysis. Procedia Comput. Sci. 2021, 188, 103–113. [Google Scholar] [CrossRef]
- Cen, H.; Yu, L.; Pu, Y.; Li, J.; Liu, Z.; Cai, Q.; Liu, S.; Nie, J.; Ge, J.; Guo, J.; et al. Prediction of CO2 concentration in sheep sheds in Xinjiang based on LightGBM-SSA-ELM. J. Agric. Mach. 2022, 53, 261–270. [Google Scholar]
- Huang, J.; Liu, S.; Hassan, S.G.; Xu, L. Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network. PLoS ONE 2021, 16, e0254179. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Li, T.; Horng, S.J. Time series forecasting using sequence-to-sequence deep learning framework. In Proceedings of the 2018 9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Taipei, China, 26–28 December 2018; IEEE: Washington, DC, USA, 2018; pp. 171–176. [Google Scholar]
- Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 2011, 22, 1341–1356. [Google Scholar] [CrossRef]
- Li, Q.; Ma, H.P.; Liu, A.F.; Li, M.Y.; Guo, Z.H. Research progress on the effects of light on goose reproductive performance and hormone levels. Chin. J. Anim. Sci. 2015, 51, 88–92. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Zhou, F.; Huang, Z.; Zhang, C. Carbon price forecasting based on CEEMDAN and LSTM. Appl. Energy 2022, 311, 118601. [Google Scholar] [CrossRef]
- Dai, S.; Niu, D.; Li, Y. Daily peak load forecasting based on complete ensemble empirical mode decomposition with adaptive noise and support vector machine optimized by modified grey wolf optimization algorithm. Energies 2018, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Huang, W.; Hu, G.; Li, J. Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network. Energy Build. 2023, 279, 112666. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Chen, X.; Yu, J.; Yang, H.; Wang, L. A new underwater acoustic signal denoising technique based on CEEMDAN, mutual information, permutation entropy, and wavelet threshold denoising. Entropy 2018, 20, 563. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, J.; Lin, S.; Peng, Y. Rolling mill bearings fault diagnosis based on improved multivariate variational mode decomposition and multivariate composite multiscale weighted permutation entropy. Measurement 2022, 195, 111190. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Cao, R.; Ali, W.; Yu, J.; Liang, H. A new feature extraction method for ship-radiated noise based on improved CEEMDAN, normalized mutual information and multiscale improved permutation entropy. Entropy 2019, 21, 624. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. EDP Sci. 2018, 23, 00037. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Du, B.; Huang, S.; Guo, J.; Tang, H.; Wang, L.; Zhou, S. Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks. Appl. Soft Comput. 2022, 122, 108875. [Google Scholar] [CrossRef]
- Niu, D.; Sun, L.; Yu, M.; Wang, K. Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model. Energy 2022, 254, 124384. [Google Scholar] [CrossRef]
- Pan, C.; Tan, J.; Feng, D. Prediction intervals estimation of solar generation based on gated recurrent unit and kernel density estimation. Neurocomputing 2021, 453, 552–562. [Google Scholar] [CrossRef]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
Environmental Variables | Measurement Range | Precision | Agreement |
---|---|---|---|
Humidity (%) | 0~100 | ±5 | IIC |
Temperature (°C) | −40~105 | ±0.4 | IIC |
Carbon dioxide (ppm) | 0~50,000 | ±20 | PWM |
Ammonia (ppm) | 0~100 | ±5% | Modbus |
Light (lx) | 0~65,535 | ±5 | IIC |
PM2.5 (ug/m3) | 0~999.9 | ±7% | Modbus |
PM10 (ug/m3) | 0~999.9 | ±7% | Modbus |
Noise (db) | 35~120 | ±0.5 | Modbus |
Hyperparameters | Optimal Parameters |
---|---|
Learning rate | 0.01 |
Batch size | 64 |
Hidden units | 100 |
Attention units | 64 |
Model | MAE | RMSE | MAPE | ||||||
---|---|---|---|---|---|---|---|---|---|
1-Step | 2-Step | 3-Step | 1-Step | 2-Step | 3-Step | 1-Step | 2-Step | 3-Step | |
RF | 1.544 | 2.327 | 4.317 | 2.185 | 3.257 | 5.885 | 2.446 | 3.710 | 6.728 |
FS-RF | 1.182 | 1.974 | 3.828 | 1.732 | 2.789 | 5.263 | 1.894 | 3.123 | 5.904 |
CEEMDAN-RF | 0.799 | 1.629 | 3.388 | 1.121 | 2.274 | 4.610 | 1.316 | 2.638 | 5.327 |
CEEMDAN-FS-RF | 0.709 | 1.254 | 2.744 | 0.989 | 1.773 | 3.908 | 1.153 | 2.020 | 4.280 |
LSTM | 1.499 | 2.910 | 5.096 | 1.813 | 3.441 | 5.975 | 2.340 | 4.508 | 7.745 |
FS-LSTM | 1.162 | 1.890 | 3.362 | 1.516 | 2.443 | 4.831 | 1.816 | 2.923 | 5.060 |
CEEMDAN-LSTM | 1.166 | 1.899 | 4.150 | 1.507 | 2.600 | 5.176 | 1.830 | 3.060 | 6.330 |
CEEMDAN-FS-LSTM | 1.044 | 1.372 | 3.039 | 1.231 | 1.920 | 4.202 | 1.636 | 2.188 | 4.596 |
GRU | 1.188 | 2.475 | 4.584 | 1.518 | 3.385 | 5.693 | 1.908 | 4.011 | 6.965 |
FS-GRU | 1.196 | 1.850 | 3.901 | 1.456 | 2.418 | 4.931 | 1.833 | 2.907 | 5.854 |
CEEMDAN-GRU | 0.884 | 1.954 | 4.060 | 1.254 | 2.629 | 4.999 | 1.485 | 3.187 | 6.243 |
CEEMDAN-FS-GRU | 0.802 | 1.482 | 2.952 | 1.034 | 1.916 | 3.681 | 1.309 | 2.380 | 4.494 |
BiLSTM | 1.238 | 2.234 | 4.159 | 1.653 | 3.100 | 5.763 | 1.978 | 3.538 | 6.351 |
FS-BiLSTM | 1.240 | 2.067 | 3.235 | 1.520 | 2.847 | 4.476 | 1.995 | 3.331 | 4.916 |
CEEMDAN-BiLSTM | 0.863 | 2.328 | 3.944 | 1.211 | 2.787 | 4.813 | 0.014 | 3.514 | 5.905 |
CEEMDAN-FS-BiLSTM | 0.870 | 1.316 | 2.647 | 1.106 | 1.691 | 3.813 | 1.346 | 2.099 | 4.067 |
BiGRU | 1.025 | 2.458 | 4.367 | 1.362 | 3.089 | 5.533 | 1.696 | 3.845 | 6.613 |
FS-BiGRU | 0.916 | 1.548 | 3.575 | 1.161 | 2.092 | 4.602 | 1.450 | 2.456 | 5.419 |
CEEMDAN-BiGRU | 0.499 | 2.030 | 3.791 | 0.693 | 2.467 | 4.651 | 0.804 | 3.061 | 5.792 |
CEEMDAN-FS-BiGRU | 0.763 | 1.388 | 2.565 | 0.912 | 1.675 | 3.421 | 1.147 | 2.103 | 3.825 |
BiGRU-Attention | 0.867 | 1.668 | 3.687 | 1.252 | 2.362 | 5.283 | 1.411 | 2.682 | 5.701 |
FS-BiGRU-Attention | 0.854 | 1.427 | 2.842 | 1.214 | 2.034 | 3.929 | 1.410 | 2.271 | 4.397 |
CEEMDAN-BiGRU-Attention | 0.838 | 1.453 | 3.179 | 1.210 | 2.092 | 4.453 | 1.337 | 2.319 | 4.983 |
CEEMDAN-FS-BiGRU-Attention | 0.557 | 0.932 | 2.154 | 0.781 | 1.344 | 3.094 | 0.896 | 1.470 | 3.355 |
Prediction Step | Confidence Level | PICP | PINAW | CWC |
---|---|---|---|---|
1-step prediction | 95% | 0.964 | 0.082 | 0.082 |
90% | 0.929 | 0.064 | 0.064 | |
85% | 0.881 | 0.051 | 0.051 | |
2-step prediction | 95% | 0.950 | 0.144 | 0.144 |
90% | 0.908 | 0.114 | 0.114 | |
85% | 0.868 | 0.095 | 0.095 | |
3-step prediction | 95% | 0.953 | 0.201 | 0.201 |
90% | 0.914 | 0.159 | 0.159 | |
85% | 0.875 | 0.129 | 0.129 |
Model | MAE | RMSE | MAPE | ||||||
---|---|---|---|---|---|---|---|---|---|
1-Step | 2-Step | 3-Step | 1-Step | 2-Step | 3-Step | 1-Step | 2-Step | 3-Step | |
CEEMDAN-FS-BiGRU-Attention vs. CEEMDAN-FS-BiGRU | 27.0% | 29.2% | 16.0% | 14.3% | 19.8% | 9.6% | 21.9% | 30.1% | 12.2% |
CEEMDAN-FS-BiGRU-Attention vs. CEEMDAN-FS-BiLSTM | 36.0% | 29.1% | 18.6% | 29.4% | 20.5% | 18.9% | 33.4% | 30.0% | 17.5% |
CEEMDAN-FS-BiGRU-Attention vs. CEEMDAN-FS-GRU | 30.5% | 37.1% | 27.0% | 24.5% | 29.9% | 15.9% | 31.5% | 38.2% | 25.3% |
CEEMDAN-FS-BiGRU-Attention vs. CEEMDAN-FS-LSTM | 46.6% | 32.0% | 29.1% | 36.6% | 30.0% | 26.4% | 45.2% | 32.8% | 27.0% |
CEEMDAN-FS-BiGRU-Attention vs. CEEMDAN-FS-RF | 21.4% | 25.7% | 21.5% | 21.0% | 22.4% | 20.8% | 22.3% | 27.2% | 21.6% |
CEEMDAN-FS-BiGRU-Attention vs. LSTM | 62.8% | 70.0% | 57.7% | 60.0% | 61.0% | 48.2% | 61.7% | 67.4% | 56.6% |
Prediction Model | Interval Prediction Method | Confidence Level | PICP | PINAW | CWC |
---|---|---|---|---|---|
CEEMDAN-FS-BiLSTM | KDE-Gaussian | 95% | 0.964 | 0.236 | 0.236 |
90% | 0.934 | 0.194 | 0.194 | ||
85% | 0.883 | 0.165 | 0.165 | ||
NDE | 95% | 0.933 | 0.195 | 0.394 | |
90% | 0.867 | 0.161 | 0.328 | ||
85% | 0.751 | 0.137 | 0.288 | ||
Bootstrap | 95% | 0.899 | 0.183 | 0.377 | |
90% | 0.799 | 0.148 | 0.313 | ||
85% | 0.699 | 0.129 | 0.280 | ||
CEEMDAN-FS-BiGRU | KDE-Gaussian | 95% | 0.970 | 0.230 | 0.230 |
90% | 0.935 | 0.189 | 0.189 | ||
85% | 0.873 | 0.156 | 0.156 | ||
NDE | 95% | 0.931 | 0.185 | 0.375 | |
90% | 0.855 | 0.150 | 0.308 | ||
85% | 0.767 | 0.126 | 0.264 | ||
Bootstrap | 95% | 0.899 | 0.171 | 0.351 | |
90% | 0.801 | 0.139 | 0.293 | ||
85% | 0.699 | 0.118 | 0.256 | ||
CEEMDAN-FS-BiGRU-Attention | KDE-Gaussian | 95% | 0.953 | 0.201 | 0.201 |
90% | 0.914 | 0.159 | 0.159 | ||
85% | 0.875 | 0.129 | 0.129 | ||
NDE | 95% | 0.915 | 0.161 | 0.328 | |
90% | 0.874 | 0.128 | 0.260 | ||
85% | 0.823 | 0.107 | 0.217 | ||
Bootstrap | 95% | 0.900 | 0.149 | 0.306 | |
90% | 0.801 | 0.103 | 0.222 | ||
85% | 0.799 | 0.099 | 0.203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Wu, Z.; Wu, J.; Jiang, J.; Chen, Y.; Chen, M.; Luo, S.; Gao, L. A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming. Mathematics 2023, 11, 3247. https://doi.org/10.3390/math11143247
Yin H, Wu Z, Wu J, Jiang J, Chen Y, Chen M, Luo S, Gao L. A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming. Mathematics. 2023; 11(14):3247. https://doi.org/10.3390/math11143247
Chicago/Turabian StyleYin, Hang, Zeyu Wu, Junchao Wu, Junjie Jiang, Yalin Chen, Mingxuan Chen, Shixuan Luo, and Lijun Gao. 2023. "A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming" Mathematics 11, no. 14: 3247. https://doi.org/10.3390/math11143247
APA StyleYin, H., Wu, Z., Wu, J., Jiang, J., Chen, Y., Chen, M., Luo, S., & Gao, L. (2023). A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming. Mathematics, 11(14), 3247. https://doi.org/10.3390/math11143247