An Improved Incremental Procedure for the Ground Reaction Based on Hoek-Brown Failure Criterion in the Tunnel Convergence-Confinement Method
Abstract
:1. Introduction
2. Related Problem Description
2.1. Relationship between Tunnel Advancing Excavation Effect and Confinement Loss
2.2. Stress Variation around a Circular Tunnel
3. Derivation of Stress/Displacement Equations in the Plastic Regions
3.1. Derivation of the Confinement Loss in Elastic Limit with the Non-Linear Failure Criteria
3.2. Derivation of the Plastic Radius
3.3. Derivation of Stress in the Plastic Region
3.4. Derivation of Displacement in the Plastic Region
- (1)
- Homogeneous solution ():
- (2)
- Particular solution ():
4. Implementation of Incremental Procedure for the Analytical Solution
Calculation Steps and Analysis Process of the Incremental Method
- (1)
- Data input stage: This stage is the input action of calculation data, including data such as tunnel excavation radius, unsupported distance, overburden depth, physical and mechanical parameters of surrounding rock, etc.
- (2)
- Calculation stage of confinement loss: To estimate the confinement loss λz at a certain distance z from the tunnel working face, it can be calculated by Equation (1).
- (3)
- Calculation stage of the incremental step: Dividing the confinement loss by n segments yields the incremental step, which can be expressed as follows:
- (4)
- Calculating each step value of λ as
- (5)
- Attaining the final value
- (6)
- According to Equation (24), it estimates the confinement loss in the elastic limit situation (λe).
- (7)
- Calculation stage of stress/displacement in the elastic zone: If , it indicates that the stress state is in the elastic zone, and the radial stress, tangential stress, and radial displacement can be calculated according to Equations (11), (12), and (13), respectively.
- (8)
- Calculation stage of stress/displacement in the plastic zone: If , it indicates that the stress state is in the plastic zone, and the plastic radius can be calculated according to Equation (27). Once this value is obtained, the program will automatically substitute Equations (29), (30), and (50) to calculate the radial stress, tangential stress, and radial displacement, respectively.
- (9)
- Data recording stage: In this stage, the stress/displacement are recorded respectively, which can be expressed as the representation of the distribution of stresses/displacements (), (), and () on the cross-section of the tunnel and () at the intrados of the tunnel.
- (10)
- Judgment stage 1 of the calculation ends: When i < n − 1, repeat steps (4) through (10).
- (11)
- Judgment stage 2 of the calculation ends: When i = n − 1, stop performing calculations and record all the obtained data.
- (12)
- Drawing production stage: Drawing the distribution diagram of stress/displacement on the cross-section and at the intrados of the tunnel.
5. Comparison of Results Obtained between Published Data and This Study
5.1. Stress/Displacement at the Intrados of the Tunnel
5.2. Distribution of Stress/Displacement on the Cross-Section of the Tunnel
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panet, M. Calcul du souténement des tunnels à section circulaire par la method convergence-confinement avec un champ de contraintes initiales anisotrope. Tunn. Et Ouvrages Souterr. 1986, 77, 228–232. [Google Scholar]
- Panet, M. Le Calcul des Tunnels par la Méthode de Convergence-Confinement; Presses de l’Ecole Nationale des Ponts et Chaussées: Paris, France, 1995. [Google Scholar]
- Hoek, E.; Brown, E.T. Underground Excavations in Rock; The Institution of Mining and Metallurgy: London, UK, 1980; Available online: http://faculty.tafreshu.ac.ir/file/download/course/1571250904-2underground-excavations-in-rock.pdf (accessed on 1 September 1980).
- Panet, M. Recommendations on the Convergence-Confinement Method; Association Française des Tunnels et de l’Espace Souterrain (AFTES): Paris, France, 2001; pp. 1–11. Available online: https://tunnel.ita-aites.org/media/k2/attachments/public/Convergence-confinement%20AFTES.pdf (accessed on 1 January 2021).
- Panet, M.; Sulem, J. Convergence-Confinement Method for Tunnel Design; Springer: Berlin/Heidelberg, Germany, 2022; Available online: https://link.springer.com/book/10.1007/978-3-030-93193-3 (accessed on 1 January 2022).
- Lee, Y.-L.; Hsu, W.-K.; Lee, C.-M.; Xin, Y.-X.; Zhou, B.-Y. Direct Calculation Method for the Analysis of Non-linear Behavior of Ground-Support Interaction of a Circular Tunnel Using Convergence Confinement Approach. Geotech. Geol. Eng. 2020, 39, 973–990. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Hsu, W.-K.; Chou, P.-Y.; Hsieh, P.-W.; Ma, C.-H.; Kao, W.-C. Verification and Comparison of Direct Calculation Method for the Analysis of Support–Ground Interaction of a Circular Tunnel Excavation. Appl. Sci. 2022, 12, 1929. [Google Scholar] [CrossRef]
- Oreste, P.P. Analysis of structural interaction in tunnels using the convergence-confinement approach. Tunnell Undergr. Space Technol. 2003, 18, 347–363. [Google Scholar] [CrossRef]
- Oreste, P. The convergence–confinement method: Roles and limits in modern geomechanical tunnel design. Am. J. Appl. Sci. 2009, 6, 757–771. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.T.; Bray, J.W.; Ladanyi, B.; Hoek, E. Ground Response Curves for Rock Tunnels. J. Geotech. Eng. 1983, 109, 15–39. [Google Scholar] [CrossRef]
- Brady, B.; Brown, E. Rock Mechanics for Underground Mining; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Wang, Y. Ground Response of Circular Tunnel in Poorly Consolidated Rock. J. Geotech. Eng. 1996, 122, 703–708. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, Y.; Tanabasi, Y. Ground reaction analyses in conventional tunnelling excavation. Tunn. Undergr. Space Technol. 2007, 22, 230–237. [Google Scholar] [CrossRef]
- Alejano, L.; Rodriguez-Dono, A.; Alonso, E.; Manín, G.F. Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunn. Undergr. Space Technol. 2011, 24, 689–705. [Google Scholar] [CrossRef]
- Mousivand, M.; Maleki, M.; Nekooei, M.; Mansoori, M.R. Application of Convergence–Confinement Method in Analysis of Shallow Non-circular Tunnels. Geotech. Geol. Eng. 2017, 35, 1185–1198. [Google Scholar] [CrossRef]
- Rocksupport. Rock Support Interaction and Deformation Analysis for Tunnels in Weak Rock; Tutorial Manual of Rocscience Inc./Rocscience Inc.: Toronto, ON, USA, 2004; pp. 1–76. Available online: https://www.rocscience.com/downloads/rocsupport/RocSupport%20Tutorial.pdf (accessed on 1 January 2004).
- Rodríguez, R.; Díaz-Aguado, M.B. Deduction and use of an analytical expression for the characteristic curve of a support based on yielding steel ribs. Tunn. Undergr. Space Technol. 2013, 33, 159–170. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, J.-J.; Zhang, R.-J.; Lai, H.-J. A numerical procedure for the fictitious support pressure in the application of the convergence–confinement method for circular tunnel design. Int. J. Rock Mech. Min. Sci. 2015, 78, 336–349. [Google Scholar] [CrossRef]
- Carranza-Torres, C.; Engen, M. The support characteristic curve for blocked steel sets in the convergence-confinement method of tunnel support design. Tunn. Undergr. Space Technol. 2017, 69, 233–244. [Google Scholar] [CrossRef]
- Oke, J.; Vlachopoulos, N.; Diederichs, M. Improvement to the Convergence-Confinement Method: Inclusion of Support Installation Proximity and Stiffness. Rock Mech. Rock Eng. 2018, 51, 1495–1519. [Google Scholar] [CrossRef]
- Lee, Y.L. Explicit procedure and analytical solution for the ground reaction due to advance excavation of a circular tunnel in an anisotropic stress field. Geotech. Geol. Eng. 2018, 36, 3281–3309. [Google Scholar] [CrossRef]
- De La Fuente, M.; Taherzadeh, R.; Sulem, J.; Nguyen, X.S.; Subrin, D. Applicability of the convergence-confinement method to full-face excavation of circular tunnels with stiff support system. Rock Mech. Rock Eng. 2019, 52, 2361–2376. [Google Scholar] [CrossRef]
- Lee, Y.-L. Explicit analysis for the ground-support interaction of a circular tunnel excavation in anisotropic stress fields. J. Chin. Inst. Eng. 2020, 43, 13–26. [Google Scholar] [CrossRef]
- Bernaud, D.; Rousset, G. The ‘New Implicit Method’ For Tunnel Analysis. Int. J. Numer. Anal. Methods Géoméch. 1996, 20, 673–690. [Google Scholar] [CrossRef]
- Humbert, P.; Dubouchet, A.; Fezans, G.; Remaud, D. CESAR-LCPC, un progiciel de calcul dédié au génie civil. Bull. Lab. Ponts Chaussées 2005, 256, 7–37. Available online: https://www.ifsttar.fr/collections/BLPCpdfs/blpc_256-257_7-37.pdf (accessed on 1 July 2005).
- González-Nicieza, C.; Álvarez-Vigil, A.; Menéndez-Díaz, A.; González-Palacio, C. Influence of the depth and shape of a tunnel in the application of the convergence–confinement method. Tunn. Undergr. Space Technol. 2008, 23, 25–37. [Google Scholar] [CrossRef]
- Vlachopoulos, N.; Diederichs, M.S. Improved Longitudinal Displacement Profiles for Convergence Confinement Analysis of Deep Tunnels. Rock Mech. Rock Eng. 2009, 42, 131–146. [Google Scholar] [CrossRef]
- Mousivand, M.; Maleki, M. Constitutive Models and Determining Methods Effects on Application of Convergence–Confinement Method in Underground Excavation. Geotech. Geol. Eng. 2017, 36, 1707–1722. [Google Scholar] [CrossRef]
- Zhao, K.; Bonini, M.; Debernardi, D.; Janutolo, M.; Barla, G.; Chen, G. Computational modelling of the mechanised excavation of deep tunnels in weak rock. Comput. Geotech. 2015, 66, 158–171. [Google Scholar] [CrossRef]
- Lee, Y.L. Establishment of the confinement loss curve using the tunnel convergence data. J. Chin. Inst. Eng. 2020, 43, 613–627. [Google Scholar] [CrossRef]
- Nikadat, N.; Marji, M.F. Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters. Géoméch. Eng. 2016, 11, 269–288. [Google Scholar] [CrossRef]
- Nikadat, N.; Fatehi, M.; Abdollahipour, A. Numerical modelling of stress analysis around rectangular tunnels with large discontinuities (fault) by a hybridized indirect BEM. J. Central South Univ. 2015, 22, 4291–4299. [Google Scholar] [CrossRef]
- Lazemi, H.A.; Marji, M.F.; Bafghi, A.R.Y.; Goshtasbi, K. Rock Failure Analysis of the Broken Zone Around a Circular Opening. Arch. Min. Sci. 2013, 58, 165–188. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Empirical Strength Criterion for Rock Masses. J. Geotech. Eng. Div. 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates or rock mass strength. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek–Brown Failure Criterion—2002 Edition. Proc. NARMS-Tac 2020, 1, 267–273. Available online: https://static.rocscience.cloud/assets/verification-and-theory/RSData/Hoek-Brown-Failure-Criterion-2002-Edition.pdf (accessed on 1 August 2002).
- Carranza-Torres, C.; Fairhurst, C. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 1999, 36, 777–809. [Google Scholar] [CrossRef]
- Carranza-Torres, C.; Fairhurst, C. Application of the Convergence-Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunn. Undergr. Space Technol. 2000, 15, 187–213. [Google Scholar] [CrossRef]
- Carranza-Torres, C. Elasto-plastic solution of tunnel problems using the generalized form of the hoek-brown failure criterion. Int. J. Rock Mech. Min. Sci. 2004, 41, 480–491. [Google Scholar] [CrossRef]
- Sharan, S. Exact and approximate solutions for displacements around circular openings in elastic–brittle–plastic Hoek–Brown rock. Int. J. Rock Mech. Min. Sci. 2005, 42, 542–549. [Google Scholar] [CrossRef]
- Park, K.-H.; Kim, Y.-J. Analytical solution for a circular opening in an elastic–brittle–plastic rock. Int. J. Rock Mech. Min. Sci. 2005, 43, 616–622. [Google Scholar] [CrossRef]
- Serrano, A.; Olalla, C.; Reig, I. Convergence of circular tunnels in elastoplastic rock masses with non-linear failure criteria and non-associated flow laws. Int. J. Rock Mech. Min. Sci. 2011, 48, 878–887. [Google Scholar] [CrossRef]
- Shen, B.; Barton, N. The disturbed zone around tunnels in jointed rock Masses. Int. J. Rock Mech. Min. Sci. 1997, 34, 117–125. [Google Scholar] [CrossRef]
- Sharan, S. Elastic–brittle–plastic analysis of circular openings in Hoek–Brown media. Int. J. Rock Mech. Min. Sci. 2003, 40, 817–824. [Google Scholar] [CrossRef]
Reference | Sharan (2003) [44] | Rocksupport (2004) [16] | ||
Parameter | Case I | Case II | Case III | Case IV |
E (MPa) | 40,000 | 5500 | 3530 | 2100 |
ν | 0.20 | 0.25 | 0.3 | 0.3 |
mi | 7.5 | 7.5 | 10 | 12 |
GIS | 100 | 80 | 22 | 17 |
D | 0 | 0 | 0 | 0 |
σci (MPa) | 300 | 30 | 5 | 4 |
Kψ | 0 | 0 | 0 | 0 |
σv (MPa) | 108 | 30 | 1.62 | 2.02 |
R (m) | 4.0 | 5.0 | 6.0 | 5.0 |
Published Studies | Radial Displacement, uR (mm) | Plastic Zone Radius, Rp (m) | EAM Radial Displacement, uR (mm) (Error * %) | EAM Plastic Zone Radius, Rp (m) (Error * %) |
---|---|---|---|---|
Case I | 12.52 | N/A | 12.96 (3.51%) | N/A |
Case II | 56.05 | 8.12 | 57.30 (2.23%) | 8.25 (1.67%) |
Case III | 12.0 | 13.77 | 12.06 (0.5%) | 15.55 (12.93%) |
Case IV | 65.5 | 26.30 | 66.80 (1.98%) | 26.9 (2.28%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-L.; Ma, C.-H.; Lee, C.-M. An Improved Incremental Procedure for the Ground Reaction Based on Hoek-Brown Failure Criterion in the Tunnel Convergence-Confinement Method. Mathematics 2023, 11, 3389. https://doi.org/10.3390/math11153389
Lee Y-L, Ma C-H, Lee C-M. An Improved Incremental Procedure for the Ground Reaction Based on Hoek-Brown Failure Criterion in the Tunnel Convergence-Confinement Method. Mathematics. 2023; 11(15):3389. https://doi.org/10.3390/math11153389
Chicago/Turabian StyleLee, Yu-Lin, Chi-Huang Ma, and Chi-Min Lee. 2023. "An Improved Incremental Procedure for the Ground Reaction Based on Hoek-Brown Failure Criterion in the Tunnel Convergence-Confinement Method" Mathematics 11, no. 15: 3389. https://doi.org/10.3390/math11153389
APA StyleLee, Y. -L., Ma, C. -H., & Lee, C. -M. (2023). An Improved Incremental Procedure for the Ground Reaction Based on Hoek-Brown Failure Criterion in the Tunnel Convergence-Confinement Method. Mathematics, 11(15), 3389. https://doi.org/10.3390/math11153389