Spectral Applications of Vertex-Clique Incidence Matrices Associated with a Graph
Abstract
:1. Introduction
2. Notations and Preliminaries
- (1)
- if and only if G is the complete graph, .
- (2)
- if and only if for non-negative integers with , and G is not isomorphic to either one of a complete graph or .
3. Matrices Associated with a Clique Partition
- (i)
- The graph G is t clique-regular if , for some positive integer t;
- (ii)
- The graph G is s clique-uniform if , for some positive integer s;
- (iii)
- The graph G is regular if and , for positive integers . Any graph is 2 clique-uniform and any d-regular graph is also d clique-regular using the trivial clique partition .
3.1. Applications of the Vertex-Clique Incidence Matrix to Graph Spectrum
- (i)
- If , then .
- (ii)
- If , then for .
- (iii)
- If , then for .
- (i)
- If , then
- (ii)
- If , then for .
- (iii)
- If , then for .
- (ii)
- By Theorem 3 (ii), if then for , that is, for , that is, for .
- (iii)
- By Theorem 3 (iii), if then for , that is, for , that is, for .
- (i)
- for .
- (ii)
- .
- (i)
- for .
- (ii)
- .
- (i)
- for .
- (ii)
- .
- (i)
- If G is a t clique-regular graph, then .
- (ii)
- If G is a s clique-uniform graph, then .
3.2. Applications to Energy of Graphs and Matrices
- (i)
- If , then .
- (ii)
- If , then .
- (iii)
- If , then .
4. Vertex-Clique Incidence Matrix of a Graph Associated with an Edge Clique Cover
4.1. Applications to the Minimum Number of Distinct Eigenvalues of a Graph
5. Concluding Remarks and Open Problems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavers, M.S. Clique Partitions and Coverings of Graphs. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2005. [Google Scholar]
- Erdös, P.; Goodman, A.W.; Pósa, L. The representation of a graph by set intersections. Can. J. Math. 1966, 18, 106–112. [Google Scholar] [CrossRef]
- Li, B.-J.; Chang, G.J. Clique coverings and partitions of line graphs. Discret. Math. 2008, 308, 2075–2079. [Google Scholar] [CrossRef]
- McGuinness, S.; Rees, R. On the number of distinct minimal clique partitions and clique covers of a line graph. Discret. Math. 1990, 83, 49–62. [Google Scholar] [CrossRef]
- Godsil, C.; Royle, G. Algebraic Graph Theory; Springer: New York, NY, USA, 2001. [Google Scholar]
- Harary, F. Graph Theory; Addison-Wesley: Boston, MA, USA, 1972. [Google Scholar]
- Ahmadi, B.; Alinaghipour, F.; Cavers, M.S.; Fallat, S.M.; Meagher, K.; Nasserasr, S. Minimum number of distinct eigenvalues of graphs. Electron. J. Linear Algebra 2013, 26, 673–691. [Google Scholar] [CrossRef]
- Levene, R.H.; Oblak, P.; Šmigoc, H. A Nordhaus–Gaddum conjecture for the minimum number of distinct eigenvalues of a graph. Linear Algebra Appl. 2019, 564, 236–263. [Google Scholar] [CrossRef]
- Fallat, S.; Hogben, L. The minimum rank of symmetric matrices described by a graph: A survey. Linear Algebra Appl. 2007, 426, 558–582. [Google Scholar] [CrossRef]
- Fallat, S.; Hogben, L. Variants on the minimum rank problem: A survey II. arXiv 2011, arXiv:1102-5142v1. [Google Scholar]
- Ferguson, W.E. The construction of Jacobi and periodic Jacobi matrices with prescribed spectra. Math. Comp. 1980, 35, 1203–1220. [Google Scholar] [CrossRef]
- Hogben, L. Spectral graph theory and the inverse eigenvalue problem of a graph. Electron. J. Linear Algebra 2005, 14, 12–31. [Google Scholar] [CrossRef]
- Zhou, J.; Bu, C.J. Eigenvalues and clique partitions of graphs. Adv. Appl. Math. 2021, 129, 102220. [Google Scholar] [CrossRef]
- Zhou, J.; van Dam, E.R. Spectral radius and clique partitions of graphs. Linear Algebra Appl. 2021, 630, 84–94. [Google Scholar] [CrossRef]
- Cioabă, S.M.; Elzinga, R.J.; Gregory, D.A. Some observations on the smallest adjacency eigenvalue of a graph. Discuss. Math. 2020, 40, 467–493. [Google Scholar] [CrossRef]
- Gutman, I. Bounds for total π-electron energy of polymethines. Chem. Phys. Lett. 1977, 50, 488–490. [Google Scholar] [CrossRef]
- Gutman, I. Bounds for all graph energies. Chem. Phys. Lett. 2012, 528, 72–74. [Google Scholar] [CrossRef]
- Koolen, J.; Moulton, V. Maximal energy graphs. Adv. Appl. Math. 2001, 26, 47–52. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2012. [Google Scholar]
- McClelland, B.J. Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys. 1971, 54, 640–643. [Google Scholar] [CrossRef]
- Abreu, N.; Cardoso, D.M.; Gutman, I.; Martins, E.A.; Robbiano, M. Bounds for the signless Laplacian energy. Linear Algebra Appl. 2011, 435, 2365–2374. [Google Scholar] [CrossRef]
- Das, K.C.; Mojallal, S.A. Relation between signless Laplacian energy, energy of graph and its line graph. Linear Algebra Appl. 2016, 493, 91–107. [Google Scholar] [CrossRef]
- Gutman, I.; Robbiano, M.; Martins, E.A.; Cardoso, D.M.; Medina, L.; Rojo, O. Energy of line graphs. Linear Algebra Appl. 2010, 433, 1312–1323. [Google Scholar] [CrossRef]
- Bernstein, D.S. Matrix Mathematics; Princeton University Press: New York, NY, USA, 2005. [Google Scholar]
- Barrett, W.; Fallat, S.; Hall, H.T.; Hogben, L.; Lin, J.C.-H.; Shader, B.L. Generalizations of the strong Arnold property and the minimum number of distinct eigenvalues of a graph. Electron. J. Comb. 2017, 24, 2–40. [Google Scholar] [CrossRef] [PubMed]
- Barrett, W.; van der Holst, H.; Loewy, R. Graphs whose minimal rank is two. Electron. J. Linear Algebra 2004, 11, 258–280. [Google Scholar] [CrossRef]
- Chen, Z.; Grimm, M.; McMichael, P.; Johnson, C.R. Undirected graphs of Hermitian matrices that admit only two distinct eigenvalues. Linear Algebra Appl. 2014, 458, 403–428. [Google Scholar] [CrossRef]
- Levene, R.H.; Oblak, P.; Šmigoc, H. Orthogonal symmetric matrices and joins of graphs. Linear Algebra Appl. 2022, 652, 213–238. [Google Scholar] [CrossRef]
- Cvetković, D.; Rowlinson, P.; Simić, S. An Introduction to the Theory of Graph Spectra; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Nikiforov, V. The energy of graphs and matrices. J. Math. Anal. Appl. 2007, 326, 1472–1475. [Google Scholar] [CrossRef]
- Nikiforov, V. Graphs and matrices with maximal energy. J. Math. Anal. Appl. 2007, 327, 735–738. [Google Scholar] [CrossRef]
- Nikiforov, V. Extremal norms of graphs and matrices. J. Math. Sci. 2012, 182, 164–174. [Google Scholar] [CrossRef]
- Consonni, V.; Todeschini, R. New spectral indices for molecule description. Match Commun. Math. Comput. Chem. 2008, 60, 3–14. [Google Scholar]
- Das, K.C.; Mojallal, S.A.; Gutman, I. Relations between Degrees, Conjugate Degrees and Graph Energies. Linear Algebra Appl. 2017, 515, 24–37. [Google Scholar] [CrossRef]
- So, W.; Robbiano, M.; de Abreu, N.M.; Gutman, I. Applications of a theorem by Ky Fan in the theory of graph energy. Linear Algebra Appl. 2010, 432, 2163–2169. [Google Scholar] [CrossRef]
- Reid, K.B.; Thomassen, C. Edge sets contained in circuits. Isr. J. Math. 1976, 24, 305–319. [Google Scholar] [CrossRef]
- Barrett, W.; Brigham Young University, Provo, UT, USA; Fallat, S.; University of Regina, Regina, SK, Canada; Furst, V.; Fort Lewis College, Durango, CO, USA; Nasserasr, S.; Rochester Institute of Technology, Rochester, NY, USA; Rooney, B.; Rochester Institute of Technology, Rochester, NY, USA; Tait, M.; Villanova University, Villanova, PA, USA. Personal Communication. 2022. [Google Scholar]
- Tracy Hall, H. SAP/SSP/SMP Tester–SAGE. Available online: https://sage.math.iastate.edu/home/pub/79/ (accessed on 15 November 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallat, S.; Mojallal, S.A. Spectral Applications of Vertex-Clique Incidence Matrices Associated with a Graph. Mathematics 2023, 11, 3595. https://doi.org/10.3390/math11163595
Fallat S, Mojallal SA. Spectral Applications of Vertex-Clique Incidence Matrices Associated with a Graph. Mathematics. 2023; 11(16):3595. https://doi.org/10.3390/math11163595
Chicago/Turabian StyleFallat, Shaun, and Seyed Ahmad Mojallal. 2023. "Spectral Applications of Vertex-Clique Incidence Matrices Associated with a Graph" Mathematics 11, no. 16: 3595. https://doi.org/10.3390/math11163595
APA StyleFallat, S., & Mojallal, S. A. (2023). Spectral Applications of Vertex-Clique Incidence Matrices Associated with a Graph. Mathematics, 11(16), 3595. https://doi.org/10.3390/math11163595