Ranking of Service Quality Index and Solutions for Online English Teaching in the Post-COVID-19 Crisis
Abstract
:1. Introduction
1.1. Research Background
1.2. Motivation
1.3. Objectives
- To construct the evaluation structure based on the SERVQUAL scale for the online English teaching service quality;
- To integrate expert consensus for analyzing the weight of dimensions and indicators for online English teaching service quality using FANP;
- To evaluate and rank alternatives to online English teaching service quality by applying GRA;
- To provide suggestions for the online English teaching industry to maintain good service quality in similar scenarios in the future based on the research findings.
2. Literature Review
2.1. SERVQUAL Scale
2.2. Fuzzy Analytic Network Process Model
2.3. Grey Rational Analysis
2.4. Summary
3. Materials and Methods
3.1. The Establishment of Hierarchy and Network Structure
3.2. Fuzzy Logic and Linguistic Variables
3.3. Questionnaire Development and Establishment
3.4. Fuzzy Analytic Network Process
3.4.1. Synthesize Opinions of All Experts
3.4.2. Set up the Fuzzy Pairwise Comparison Matrix
3.4.3. Fuzzy Decomposition
3.4.4. Set up the De-Fuzzified Pairwise Comparison Matrix
3.4.5. Consistency Test
3.4.6. The Super Matrix Construction
3.5. Grey Rational Analysis
3.5.1. The Definition of Evaluation Indicators and Data Treatment
3.5.2. The Calculation of Referential Series and Compared Series
3.5.3. Normalization
3.5.4. Calculate the Difference between Referential Series and Compared Series
3.5.5. Calculate the Gray Rational Coefficient
3.5.6. The Calculation the Gray Rational Grade
4. Result
4.1. The Construction of Hierarchy and Network Structure
4.2. Questionnaire Establishment and Measurement
4.3. Numerical Analysis
4.3.1. Fuzzy Analytic Network Process Model
4.3.2. Gray Rational Analysis
4.4. Research Result
4.4.1. Fuzzy Analytic Network Process Model
4.4.2. Gray Rational Analysis
5. Discussion and Research Limitation
5.1. Discussion
5.2. Research Limitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karakose, T. The Impact of the COVID-19 Epidemic on Higher Education: Opportunities and Implications for Policy and Practice. Educ. Process Int. J. EDUPIJ 2021, 10, 7–12. [Google Scholar] [CrossRef]
- Ria, N.S. Teaching during COVID-19 Pandemic: What Should Educators Do to Save Nations’ Educational Crisis? Lectio J. Lang. Lang. Teach. 2021, 1, 29–40. [Google Scholar]
- Sarnoto, A.Z.; Shunhaji, A.; Rahmawati, S.T.; Hidayat, R.; Amiroh, A.; Hamid, A. The Urgency of Education Crisis Management Based on Islamic Boarding Schools during the COVID-19 Pandemic. Linguist. Cult. Rev. 2021, 5, 1764–1774. [Google Scholar] [CrossRef]
- la Velle, L.; Newman, S.; Montgomery, C.; Hyatt, D. Initial Teacher Education in England and the Covid-19 Pandemic: Challenges and Opportunities. J. Educ. Teach. 2020, 46, 596–608. [Google Scholar] [CrossRef]
- Hoofman, J.; Secord, E. The Effect of COVID-19 on Education. Pediatr. Clin. 2021, 68, 1071–1079. [Google Scholar] [CrossRef]
- Hazaymeh, W.A. EFL Students’ Perceptions of Online Distance Learning for Enhancing English Language Learning during Covid-19 Pandemic. Int. J. Instr. 2021, 14, 501–518. [Google Scholar] [CrossRef]
- Dhawan, S. Online Learning: A Panacea in the Time of COVID-19 Crisis. J. Educ. Technol. Syst. 2020, 49, 5–22. [Google Scholar] [CrossRef]
- Agarwal, S.; Kaushik, J. Student’s Perception of Online Learning during COVID Pandemic. Indian J. Pediatr. 2020, 87, 554. [Google Scholar] [CrossRef]
- Syauqi, K.; Munadi, S.; Triyono, M.B. Students’ Perceptions toward Vocational Education on Online Learning during the COVID-19 Pandemic. Int. J. Eval. Res. Educ. 2020, 9, 881–886. [Google Scholar] [CrossRef]
- Muthuprasad, T.; Aiswarya, S.; Aditya, K.S.; Jha, G.K. Students’ Perception and Preference for Online Education in India during COVID -19 Pandemic. Soc. Sci. Humanit. Open 2021, 3, 100101. [Google Scholar] [CrossRef]
- Bączek, M.; Zagańczyk-Bączek, M.; Szpringer, M.; Jaroszyński, A.; Wożakowska-Kapłon, B. Students’ Perception of Online Learning during the COVID-19 Pandemic. Medicine 2021, 100, e24821. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.K.; Spitsyna, N.; Isaeva, A. Learning Foreign Languages in a Digital Environment Learners’ Perception of the Sudden Transition to e-Learning during COVID-19 Lockdown. Electron. J. E-Learn 2021, 19, 548–558. [Google Scholar] [CrossRef]
- Laili, R.N.; Nashir, M. Higher Education Students’ Perception on Online Learning during Covid-19 Pandemic. Edukatif J. Ilmu Pendidik. 2021, 3, 689–697. [Google Scholar] [CrossRef]
- Rifiyanti, H. Learners’ Perceptions of Online English Learning during COVID-19 Pandemic. Scope J. Engl. Lang. Teach. 2020, 5, 31–35. [Google Scholar] [CrossRef]
- Almusharraf, N.; Khahro, S. Students Satisfaction with Online Learning Experiences during the COVID-19 Pandemic. Int. J. Emerg. Technol. Learn. IJET 2020, 15, 246–267. [Google Scholar] [CrossRef]
- Bao, W. COVID-19 and Online Teaching in Higher Education: A Case Study of Peking University. Hum. Behav. Emerg. Technol. 2020, 2, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S. Instructional Strategies for Online Teaching in COVID-19 Pandemic. Hum. Behav. Emerg. Technol. 2021, 3, 199–203. [Google Scholar] [CrossRef]
- König, J.; Jäger-Biela, D.; Glutsch, N. Adapting to Online Teaching during COVID-19 School Closure: Teacher Education and Teacher Competence Effects among Early Career Teachers in Germany. Eur. J. Teach. Educ. 2020, 43, 608–622. [Google Scholar] [CrossRef]
- Huang, R.; Tlili, A.; Wang, H.; Shi, Y.; Bonk, C.J.; Yang, J.; Burgos, D. Emergence of the Online-Merge-Offline (OMO) Learning Wave in the Post-COVID-19 Era: A Pilot Study. Sustainability 2021, 13, 3512. [Google Scholar] [CrossRef]
- Younesi, M.; Khan, M.R. English Language Teaching through the Internet at Post COVID-19 Age in India: Views and Attitudes. Int. J. Res. Anal. Rev. 2020, 7, 870–875. [Google Scholar]
- Kaoud, H.; El-Shihy, D.; Yousri, M. Online Learning in Egyptian Universities Post COVID-19 Pandemic: A Student’s Perspective. Int. J. Emerg. Technol. Learn. IJET 2021, 16, 38. [Google Scholar] [CrossRef]
- Peimani, N.; Kamalipour, H. Online Education in the Post COVID-19 Era: Students’ Perception and Learning Experience. Educ. Sci. 2021, 11, 633. [Google Scholar] [CrossRef]
- Camilleri, M.A. Evaluating Service Quality and Performance of Higher Education Institutions: A Systematic Review and a Post-COVID-19 Outlook. Int. J. Qual. Serv. Sci. 2021, 13, 268–281. [Google Scholar] [CrossRef]
- Lin, C.-L.; Jin, Y.Q.; Zhao, Q.; Yu, S.-W.; Su, Y.-S. Factors Influence Students’ Switching Behavior to Online Learning under COVID-19 Pandemic: A Push–Pull–Mooring Model Perspective. Asia-Pac. Edu. Res. 2021, 30, 229–245. [Google Scholar] [CrossRef]
- Busto, S.; Dumbser, M.; Gaburro, E. A Simple but Efficient Concept of Blended Teaching of Mathematics for Engineering Students during the COVID-19 Pandemic. Educ. Sci. 2021, 11, 56. [Google Scholar] [CrossRef]
- MacLeod, K.R.; Swart, W.W.; Paul, R.C. Continual Improvement of Online and Blended Teaching Using Relative Proximity Theory. Decis. Sci. J. Innov. Educ. 2019, 17, 53–75. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Chu, S.K.W.; Zainuddin, Z.; Zhang, Y. Applying Blended Synchronous Teaching and Learning for Flexible Learning in Higher Education: An Action Research Study at a University in Hong Kong. Asia Pac. J. Educ. 2022, 42, 211–227. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Parasuraman, A.; Berry, L.L.; Zeithaml, V.A. Perceived Service Quality as a Customer-based Performance Measure: An Empirical Examination of Organizational Barriers Using an Extended Service Quality Model. Hum. Resour. Manag. 1991, 30, 335–364. [Google Scholar] [CrossRef]
- Asubonteng, P.; McCleary, K.J.; Swan, J.E. SERVQUAL Revisited: A Critical Review of Service Quality. J. Serv. Mark. 1996, 10, 62–81. [Google Scholar] [CrossRef]
- Iwaarden, J.V.; Wide, J.; Bell, V.L.; Miller, R. Applying SERVQUAL to Websites: An Exploratory Study. Int. J. Qual. Manag. 2003, 20, 919–935. [Google Scholar]
- Arambewela, R.; Hall, J. A Comparative Analysis of International Education Satisfaction Using Servqual. J. Serv. Res. 2006, 6, 141–163. [Google Scholar]
- Stodnick, M.; Rogers, P. Using SERVQUAL to Measure the Quality of the Classroom Experience. Decis. Sci. J. Innov. Educ. 2008, 6, 115–133. [Google Scholar] [CrossRef]
- Yousapronpaiboon, K. SERVQUAL: Measuring Higher Education Service Quality in Thailand. Procedia-Soc. Behav. Sci. 2014, 116, 1088–1095. [Google Scholar] [CrossRef]
- Aboubakr, R.M.; Bayoumy, H.M.M. Evaluating Educational Service Quality among Dentistry and Nursing Students with the SERVQUAL Model: A Cross-Sectional Study. J. Taibah Univ. Med. Sci. 2022, 17, 648–657. [Google Scholar] [CrossRef]
- Lizarelli, F.L.; Osiro, L.; Ganga, G.M.D.; Mendes, G.H.S.; Paz, G.R. Integration of SERVQUAL, Analytical Kano, and QFD Using Fuzzy Approaches to Support Improvement Decisions in an Entrepreneurial Education Service. Appl. Soft Comput. 2021, 112, 107786. [Google Scholar] [CrossRef]
- Nguyen, P.H. A Fuzzy Analytic Hierarchy Process (FAHP) Based on SERVQUAL for Hotel Service Quality Management: Evidence from Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 1101–1109. [Google Scholar]
- Stević, Ž.; Tanackov, I.; Puška, A.; Jovanov, G.; Vasiljević, J.; Lojaničić, D. Development of Modified SERVQUAL–MCDM Model for Quality Determination in Reverse Logistics. Sustainability 2021, 13, 5734. [Google Scholar] [CrossRef]
- Abdolvand, M.A.; Taghipouryan, M.J. Evaluation of Customs Service Quality by Using Fuzzy SERVQUAL and Fuzzy MCDM. Am. J. Sci. Res. 2011, 35, 89–103. [Google Scholar]
- Altuntas, S.; Dereli, T.; Yilmaz, M.K. Multi-Criteria Decision Making Methods Based Weighted SERVQUAL Scales to Measure Perceived Service Quality in Hospi-Tals: A Case Study from Turkey. Total Qual. Manag. Bus. Excell. 2012, 23, 1379–1395. [Google Scholar] [CrossRef]
- Liu, C.C.; Chen, J.J. Research on Service Quality Index of UAV Film Production-Dual Perspective. J. Qual. 2021, 28, 231–251. [Google Scholar]
- Afkham, L.; Abdi, F.; Komijan, A. Evaluation of Service Quality by Using Fuzzy MCDM: A Case Study in Iranian Health-Care Centers. Manag. Sci. Lett. 2012, 2, 291–300. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Chen, S. A Combined MCDM Model Based on DEMATEL and ANP for the Selection of Airline Service Quality Improvement Criteria: A Research Based on the Taiwan Airline Industry. J. Air. Transp. Manag. 2016, 57, 7–18. [Google Scholar] [CrossRef]
- Tsai, W.C. Applying Service Quality Gap Theory to Establish the Quality Indicators And Evaluate the Service Quality for Chinese Medicine. Yearb. Chin. Med. Pharm. 2005, 23, 241–302. [Google Scholar]
- Wu, C.S.; Lin, C.T.; Lee, C. Optimal Marketing Strategy: A Decision-Making with ANP and TOPSIS. Int. J. Prod. Econ. 2010, 127, 190–196. [Google Scholar] [CrossRef]
- Ashouri, F. Quality Indicators in the Mobile Industry Rankings Based on Indicators of Customer Satisfaction with the Hybrid Approach DEMATEL and ANP Appropriate Strategy Based on Gray System. Orig. Sci. Pap. 2016, 3, 62–72. [Google Scholar] [CrossRef]
- Saaty, T.L. Rank from Comparisons and from Ratings in the Analytic Hierarchy/Network Processes. Eur. J. Oper. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Azimi, R.; Yazdani-Chamzini, A.; Fouladgar, M.M.; Zavadskas, E.K.; Basiri, M.H. Ranking the Strategies of Mining Sector through ANP and TOPSIS in a SWOT Framework. J. Bus. Econ. Manag. 2011, 12, 670–689. [Google Scholar] [CrossRef]
- Chen, C.C.; Lin, Y.J. The Key Success Factors of Development of New Products with Design Flexibility by Analytic Network Process—A Case Study of A High-Tech Company. Manag. Inf. Comput. 2015, 201503, 150–161. [Google Scholar]
- Zadeh, L. Fuzzy Sets. Inf. Control 1965, 9, 338–353. [Google Scholar] [CrossRef]
- Liu, C.C.; Chen, J.J. Analysis of the Weights of Service Quality Indicators for Drone Filming and Photography by the Fuzzy Analytic Network Process. Appl. Sci. 2019, 9, 1236. [Google Scholar] [CrossRef]
- Vanegas, L.V.; Labib, A.W. A Fuzzy Quality Function Deployment (FQFD) Model for Deriving Optimum Targets. Int. J. Prod. Res. 2001, 39, 99–120. [Google Scholar] [CrossRef]
- Kahraman, C.; Ertay, T.; Büyüközkan, G. A Fuzzy Optimization Model for QFD Planning Process Using Analytic Network Approach. Eur. J. Oper. Res. 2006, 171, 390–411. [Google Scholar] [CrossRef]
- Lupo, T. A Fuzzy Framework to Evaluate Service Quality in the Healthcare Industry: An Empirical Case of Public Hospital Service Evaluation in Sicily. Appl. Soft Comput. 2016, 40, 468–478. [Google Scholar] [CrossRef]
- Chang, S.C.; Tsai, P.H.; Chang, S.C. A Hybrid Fuzzy Model for Selecting and Evaluating the E-Book Business Model: A Case Study on Taiwan e-Book Firms. Appl. Soft Comput. 2015, 34, 194–204. [Google Scholar] [CrossRef]
- Ozdemir, Y.; Basligil, H. Aircraft Selection Using Fuzzy ANP and the Generalized Choquet Integral Method: The Turkish Airlines Case. J. Intell. Fuzzy Syst. 2016, 31, 589–600. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Baskar, C.; Karthik, T. An Integrated Framework for Mechatronics Based Product Development in a Fuzzy Environment. Appl. Soft Comput. 2015, 27, 376–390. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chen, J.-J.; Ma, Y.-Y. Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era. Mathematics 2023, 11, 1255. [Google Scholar] [CrossRef]
- Deng, J.-L. Control Problems of Grey Systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Deng, J.-L. Introduction to Grey System. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Hinduja, A.; Pandey, M. Comparative Study of MCDM Methods under Different Levels of Uncertainty. Int. J. Inf. Decis. Sci. 2021, 13, 16–41. [Google Scholar] [CrossRef]
- Wang, Q.B.; Peng, A.H. Developing MCDM Approach Based on GRA and TOPSIS. Appl. Mech. Mater. 2010, 34–35, 1931–1935. [Google Scholar] [CrossRef]
- Asjad, M.; Talib, F. Selection of Optimal Machining Parameters Using Integrated MCDM Approaches. Int. J. Adv. Oper. Manag. 2018, 10, 109–129. [Google Scholar] [CrossRef]
- Esangbedo, M.O.; Xue, J.; Bai, S.; Esangbedo, C.O. Relaxed Rank Order Centroid Weighting MCDM Method With Improved Grey Relational Analysis for Subcontractor Selection: Photothermal Power Station Construction. IEEE Trans. Eng. Manag. 2022, 1–18. [Google Scholar] [CrossRef]
- Kabak, M.; Dagdeviren, M. A Hybrid Approach Based on ANP and Grey Relational Analysis for Machine Selection. Teh. Vjesn. -Tech. Gaz. 2017, 24, 109–118. [Google Scholar] [CrossRef]
- Hinduja, A.; Pandey, M. An ANP-GRA-Based Evaluation Model for Security Features of IoT Systems. In Intelligent Communication, Control and Devices; Choudhury, S., Mishra, R., Mishra, R.G., Kumar, A., Eds.; Springer: Singapore, 2020; pp. 243–253. [Google Scholar]
- Hsu, P.-F. Evaluation of Advertising Spokespersons via the ANP-GRA Selection Model. J. Grey Syst. 2009, 21, 35–48. [Google Scholar]
- Hsu, P.-F. Selection Model Based on ANP and GRA for Independent Media Agencies. Qual. Quant. 2012, 46, 1–17. [Google Scholar] [CrossRef]
- Gumus, A.T.; Yayla, A.Y.; Çelik, E.; Yildiz, A. A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey. Energies 2013, 6, 3017–3032. [Google Scholar] [CrossRef]
- Ayağ, Z.; Yücekaya, A. A Fuzzy ANP-Based GRA Approach to Evaluate ERP Packages. IJEIS 2019, 15, 45–68. [Google Scholar] [CrossRef]
- Ertugrul, I.; Oztas, T.; Ozcil, A.; Oztas, G.Z. Grey Relational Analysis Approach in Academic Performance Comparison of University: A Case Study of Turkish Universities. Eur. Sci. J. ESJ 2016, 12, 128–139. [Google Scholar]
- Zhang, X.; Yang, X.; Yang, J. Teaching Evaluation Algorithm Based on Grey Relational Analysis. Complexity 2021, 2021, e5596518. [Google Scholar] [CrossRef]
- Wan, J.; Lin, C.-L. Research on the Service Quality Index and Alternatives Evaluation and Ranking for Online Yue Kiln Celadon Art Education in Post COVID-19 Era. Mathematics 2023, 11, 1339. [Google Scholar] [CrossRef]
- Han, W.; Han, L.; Bin, C.; Han, W.; Ying, W.B. The Selection Algorithm for Connection Modes of Medium Voltage Power Distribution Network Based on FAHP-GRA. Phys. Procedia 2012, 24, 345–353. [Google Scholar] [CrossRef]
- Altintas, K.; Vayvay, O.; Apak, S.; Cobanoglu, E. An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances. Sustainability 2020, 12, 1602. [Google Scholar] [CrossRef]
- Tsai, W.C.; Kung, P.T.; Wang, R.H.; Chang, Y.H.; Lee, S.Y. Applying the SERVQUAL Questionnaire to Establish Quality Indicators for Chinese Medicine. Taiwan J. Public Health 2008, 27, 309–319. [Google Scholar]
- Herrera, F.; Herrera-Viedma, E. Linguistic Decision Analysis: Steps for Solving Decision Problems under Linguistic Information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Zimmermann, H. Fuzzy Set Theory—And Its Applications, 2nd ed.; Kluwer Academic: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Zadeh, L. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Lee, A.H.I. A Fuzzy Supplier Selection Model with the Consideration of Benefits, Opportunities, Costs and Risks. Expert Syst. Appl. 2009, 36, 2879–2893. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, Y.H.; Hsu, C.F.; Hung, H.C. A Green Supplier Selection Model for High-Tech Industry. Expert Syst. Appl. 2009, 36, 7917–7927. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, H.Y.; Chang, C.T. Fuzzy Multiple Goal Programming Applied to Tft-Lcd Supplier Selection by Downstream Manufacturers. Expert Syst. Appl. 2009, 36, 6318–6325. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, H.Y.; Wang, W.P. Analysis of Priority Mix Planning for the Fabrication of Semiconductors under Uncertainty. Int. J. Adv. Manuf. Technol. 2006, 28, 351–361. [Google Scholar] [CrossRef]
- Chang, C.H. Evaluating Weapon Systems Using Ranking Fuzzy Numbers. Fuzzy Sets Syst. 1999, 107, 25–35. [Google Scholar] [CrossRef]
- Lin, Y.-H. The Algorithm of Fuzzy Linguistic Numbers and Its Comparison of Scoring. J. Natl. Taichung Teach. Coll. 2003, 17, 279–304. [Google Scholar]
- Chen, D.-C. Evaluation and Inspection of Domestic Civil Aviation Safety Performance. Master’s Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2003. [Google Scholar]
- Dehghani, M.; Esmaeilian, M.; Tavakkoli-Moghaddam, R. Employing Fuzzy Anp for Green Supplier Selection and Order Allocations: A Case Study. Int. J. Econ. Manag. Soc. Sci. 2013, 2, 565–575. [Google Scholar]
- Buckley, J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Pedrycz, W. Why Triangular Membership Functions? Fuzzy Sets Syst. 1994, 64, 21–30. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Babakus, E.; Mangold, W.G. Adapting the SERVQUAL Scale to Hospital Services: An Empirical Investigation. Health Serv. Res. 1992, 22, 767–786. [Google Scholar]
- Parenté, F.J.; Anderson-Parenté, J.K. Delphi Inquiry Systems. Judgmental Forecast. 1987, 129–156. [Google Scholar]
- Zhang, G.; Zou, P.X.W. Fuzzy Analytical Hierarchy Process Risk Assessment Approach for Joint Venture Construction Projects in China. J. Constr. Eng. Manag. 2007, 133, 771–779. [Google Scholar] [CrossRef]
- Hyun, C.; Cho, K.; Koo, K.; Hong, T.; Moon, H. Effect of Delivery Methods on Design Performance in Multifamily Housing Projects. J. Constr. Eng. Manag. 2008, 134, 468–482. [Google Scholar] [CrossRef]
- Lam, K.C.; Lam, M.C.K.; Wang, D. MBNQA–Oriented Self-Assessment Quality Management System for Contractors: Fuzzy AHP Approach. Constr. Manag. Econ. 2008, 26, 447–461. [Google Scholar] [CrossRef]
- Pan, N.F. Fuzzy AHP Approach for Selecting the Suitable Bridge Construction Method. Autom. Constr. 2008, 17, 958–965. [Google Scholar] [CrossRef]
- Dalal, J.; Mohapatra, P.K.; Chandra, M.G. Prioritization of Rural Roads: AHP in Group Decision. Eng. Constr. Archit. Manag. 2010, 17, 135–158. [Google Scholar] [CrossRef]
- Zou, P.X.W.; Li, J. Risk Identification and Assessment in Subway Projects: Case Study of Nanjing Subway Line 2. Constr. Manag. Econ. 2010, 28, 1219–1238. [Google Scholar] [CrossRef]
- Li, J.; Zou, P.X.W. Fuzzy AHP-Based Risk Assessment Methodology for PPP Projects. J. Constr. Eng. Manag. 2011, 137, 1205–1209. [Google Scholar] [CrossRef]
- Pan, W.; Dainty, A.R.J.; Gibb, A.G.F. Establishing and Weighting Decision Criteria for Building System Selection in Housing Construction. J. Constr. Eng. Manag. 2012, 138, 1239–1250. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-Criteria Evaluation Model for the Selection of Sustainable Materials for Building Projects. Autom. Constr. 2013, 30, 113–125. [Google Scholar] [CrossRef]
- Chou, J.; Pham, A.; Wang, H. Bidding Strategy to Support Decision-Making by Integrating Fuzzy AHP and Regression-Based Simulation. Autom. Constr. 2013, 35, 517–527. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.; Ameyaw, E.; Owusu, E.; Pärn, E.; Edwards, D. Review of Application of Analytic Hierarchy Process (AHP) in Construction. Int. J. Constr. Manag. 2018, 19, 436–452. [Google Scholar] [CrossRef]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Adamo, J.M. Fuzzy Decision Tree. Fuzzy Sets Syst. 1980, 4, 207–219. [Google Scholar] [CrossRef]
- Kwong, C.K.; Bai, H. A Fuzzy AHP Approach to the Determination of Importance Weights of Customer Requirements in Quality Function Deployment. J. Intell. Manuf. 2002, 13, 367–377. [Google Scholar] [CrossRef]
- Lin, R.; Lin, J.S.-J.; Chang, J.; Tang, D.; Chao, H.; Julian, P.C. Note on Group Consistency in Analytic Hierarchy Process. Eur. J. Oper. Res. 2008, 190, 672–678. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Wu, H.J.; Chen, C.B. An Alternative Form for Grey Relational Grades. J. Grey Syst. 1999, 11, 7–12. [Google Scholar]
- Tseng, M.L.; Lin, Y.H.; Chiu, A.S.F.; Liao, J.C.H. Using FANP Approach on Selection of Competitive Priorities Based on Cleaner Production Implementation: A Case Study in PCB Manufacturer, Taiwan. Clean Technol. Environ. Policy 2008, 10, 17–29. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, C.-Y.; Cheng, H.-C. Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project. Mathematics 2019, 7, 417. [Google Scholar] [CrossRef]
- Wang, C.-N.; Su, C.-C.; Nguyen, V.T. Nuclear Power Plant Location Selection in Vietnam under Fuzzy Environment Conditions. Symmetry 2018, 10, 548. [Google Scholar] [CrossRef]
- Matzler, K.; Sauerwein, E. The Factor Structure of Customer Satisfaction: An Empirical Test of the Importance Grid and the Penalty-reward-contrast Analysis. Int. J. Serv. Ind. Manag. 2002, 13, 314–332. [Google Scholar] [CrossRef]
- Kim, W.; Kang, G.; Chul, K.Y. The Determinants of Continuous Usage Intention for One-on-one Online English Education Program. J. Internet Electron. Commer. Res. 2019, 19, 113–126. [Google Scholar] [CrossRef]
- Uppal, M.A.; Ali, S.; Gulliver, S.R. Factors Determining E-Learning Service Quality. Br. J. Educ. Technol. 2018, 49, 412–426. [Google Scholar] [CrossRef]
- Sumi, R.S. Satisfaction of E-Learners with Electronic Learning Service Quality Using the SERVQUAL Model. J. Open Innov. Technol. Mark. Complex. 2021, 7, 227. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Chen, J.-J.; Lin, C.-L. Research on the Priority of Service Quality Index for Online English Teaching during the COVID-19 Pandemic: Dual Perspective. Mathematics 2022, 10, 3642. [Google Scholar] [CrossRef]
Dimensions | Description |
---|---|
Tangibility | Appearance of physical facilities, personnel, and written materials |
Reliability | Reliable and correct performance of the promised service capabilities |
Responsiveness | Willingness to help customers and provide prompt service |
Assurance | The ability of employees to inspire trust and confidence in customers |
Empathy | Give customers individualised treatment |
Triangular Fuzzy Number | Linguistic Variables |
---|---|
= (1,1,1) | Equally Preferred |
= (1,2,3) | Intermediate |
= (2,3,4) | Moderately Preferred |
= (3,4,5) | Intermediate |
= (4,5,6) | Strongly Preferred |
= (5,6,7) | Intermediate |
= (6,7,8) | Very Strongly Preferred |
= (7,8,9) | Intermediate |
= (9,9,9) | Extremely Preferred |
The Order of Matrix | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R.I. | - | - | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.53 | 1.56 | 1.57 | 1.59 |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) |
---|---|---|---|---|---|
Tangibility (A) | (1,1,1) | (3,4,5) | (3,4,5) | (3,4,5) | (1/3,1/2,1) |
Reliability (B) | (1/5,1/4,1/3) | (1,1,1) | (1/5,1/4,1/3) | (1/3,1/2,1) | (1/5,1/4,1/3) |
Responsiveness (C) | (1/5,1/4,1/3) | (3,4,5) | (1,1,1) | (2,3,4) | (1/3,1/2,1) |
Assurance (D) | (1/5,1/4,1/3) | (1,2,3) | (1/4,1/3,1/2) | (1,1,1) | (1/5,1/4,1/3) |
Empathy (E) | (1,2,3) | (3,4,5) | (1,2,3) | (3,4,5) | (1,1,1) |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) |
---|---|---|---|---|---|
Tangibility (A) | 1 | 4 | 4 | 4 | 1/2 |
Reliability (B) | 1/4 | 1 | 1/4 | 1/2 | 1/4 |
Responsiveness (C) | 1/4 | 4 | 1 | 3 | 1/2 |
Assurance (D) | 1/4 | 2 | 1/3 | 1 | 1/4 |
Empathy (E) | 2 | 4 | 2 | 4 | 1 |
Dimensions | Maximum Individual Value (AM) |
---|---|
Tangibility (A) | |
Reliability (B) | |
Responsiveness (C) | |
Assurance (D) | |
Empathy (E) | |
Dimensions | The Calculation of Weight (ω) |
---|---|
Tangibility (A) | |
Reliability (B) | |
Responsiveness (C) | |
Assurance (D) | |
Empathy (E) |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) |
---|---|---|---|---|---|
Tangibility (A) | 1 × 0.3179 | 4 × 0.0602 | 4 × 0.1724 | 4 × 0.0842 | 1/2 × 0.3652 |
Reliability (B) | 1/4 × 0.3179 | 1 × 0.0602 | 1/4 × 0.1724 | 1/2 × 0.0842 | 1/4 × 0.3652 |
Responsiveness (C) | 1/4 × 0.3179 | 4 × 0.0602 | 1 × 0.1724 | 3 × 0.0842 | 1/2 × 0.3652 |
Assurance (D) | 1/4 × 0.3179 | 2 × 0.0602 | 1/3 × 0.1724 | 1 × 0.0842 | 1/4 × 0.3652 |
Empathy (E) | 2 × 0.3179 | 4 × 0.0602 | 2 × 0.1724 | 4 × 0.0824 | 1 × 0.3652 |
A | B | C | D | E | Total | ω | W1 | |
---|---|---|---|---|---|---|---|---|
A | 0.3179 | 0.2410 | 0.6896 | 0.3368 | 0.1826 | 1.7679 | 0.3179 | 1.7679/0.3179 = 5.5604 |
B | 0.0795 | 0.0602 | 0.0431 | 0.0421 | 0.0913 | 0.3162 | 0.0602 | 0.3162/0.0602 = 5.2495 |
C | 0.0795 | 0.2410 | 0.1724 | 0.2526 | 0.1826 | 0.928 | 0.1724 | 0.928/0.1724 = 5.383 |
D | 0.0795 | 0.1205 | 0.0575 | 0.0842 | 0.0913 | 0.4329 | 0.0842 | 0.4329/0.0842 = 5.1421 |
E | 0.6359 | 0.2410 | 0.3448 | 0.3368 | 0.3652 | 1.9236 | 0.3652 | 1.9236/0.3652 = 5.2671 |
λmax = 26.6021/5 = 5.3204 |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) | Weights |
---|---|---|---|---|---|---|
Tangibility (A) | 1 | 1/4 | 1/4 | 1/4 | 2 | 0.0783 |
Reliability (B) | 4 | 1 | 4 | 2 | 4 | 0.4133 |
Responsiveness (C) | 4 | 1/4 | 1 | 1/3 | 2 | 0.1444 |
Assurance (D) | 4 | 1/2 | 3 | 4 | 3 | 0.2957 |
Empathy (E) | 1/2 | 1/4 | 1/2 | 1/4 | 1 | 0.0682 |
Total | 1 | |||||
C.I. = 0.0801, C.R. = 0.0715 |
Compare Respect to | Group | Pairwise Comparison | C.I. | C.R. | |
---|---|---|---|---|---|
Dimensions | B | A and D, A and E, D and E | 0.0429 | 0.0739 | |
C | B and E | 0.0000 | 0.0000 | ||
D | A and B, A and C, A and D, B and C, B and D, C and D | 0.054 | 0.0601 | ||
Indicators | Goal | A | A1 and A2, A1 and A3, A1 and A4, A2 and A3, A2 and A4, A3 and A4 | 0.0069 | 0.0076 |
B | B1 and B2, B1 and B3, B1 and B4, B2 and B3, B2 and B4, B3 and B4 | 0.0262 | 0.0292 | ||
C | C1 and C2, C1 and C3, C2 and C3 | 0.0046 | 0.0079 | ||
D | D1 and D2, D1 and D3, D2 and D3 | 0.0091 | 0.0158 | ||
E | E1 and E2, E1 and E3, E1 and E4, E2 and E3, E2 and E4, E3 and E4 | 0.0201 | 0.0224 | ||
C2 | E | E2 and E3, E2 and E4, E3 and E4 | 0.0368 | 0.0634 | |
D1 | C | C2 and C3 | 0.0000 | 0.0000 | |
D2 | C | C2 and C3 | 0.0000 | 0.0000 |
Dimensions | Tangibility | Reliability | Responsiveness | Assurance | Empathy | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | C1 | C2 | C3 | D1 | D2 | D3 | E1 | E2 | E3 | E4 | |
Tangibility | A1 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 |
A2 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
A3 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
A4 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
Reliability | B1 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 |
B2 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
B3 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
B4 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
Responsiveness | C1 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 |
C2 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
C3 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
Assurance | D1 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 |
D2 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
D3 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
Empathy | E1 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 |
E2 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
E3 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 | |
E4 | 0.003 | 0.006 | 0.018 | 0.016 | 0.129 | 0.051 | 0.114 | 0.056 | 0.046 | 0.040 | 0.063 | 0.100 | 0.049 | 0.151 | 0.008 | 0.123 | 0.015 | 0.013 |
Indicators | Referential Series (x0) | Compared Series (xi) | ||||
---|---|---|---|---|---|---|
Alt 1 | Alt 2 | Alt 3 | Alt 4 | Alt 5 | ||
A1 | 6.20 | 1.00 | 1.41 | 6.20 | 4.86 | 4.45 |
A2 | 6.20 | 1.23 | 1.41 | 6.20 | 4.77 | 3.52 |
A3 | 6.57 | 1.23 | 6.57 | 6.20 | 4.77 | 3.52 |
A4 | 7.12 | 1.23 | 7.12 | 6.20 | 4.86 | 3.52 |
B1 | 7.12 | 1.23 | 7.12 | 3.87 | 4.77 | 4.45 |
B2 | 7.12 | 1.00 | 7.12 | 4.70 | 4.77 | 4.45 |
B3 | 6.06 | 1.32 | 6.06 | 3.87 | 3.90 | 3.52 |
B4 | 7.35 | 1.32 | 7.35 | 3.87 | 4.45 | 2.08 |
C1 | 6.06 | 1.74 | 6.06 | 3.87 | 3.52 | 2.88 |
C2 | 7.23 | 1.41 | 7.23 | 4.70 | 3.52 | 2.08 |
C3 | 7.12 | 1.52 | 7.12 | 4.79 | 3.52 | 2.08 |
D1 | 6.12 | 1.41 | 6.12 | 4.79 | 4.45 | 2.08 |
D2 | 6.84 | 1.52 | 6.84 | 4.79 | 3.52 | 2.88 |
D3 | 7.12 | 1.74 | 7.12 | 4.70 | 4.45 | 2.08 |
E1 | 6.10 | 1.52 | 6.10 | 4.70 | 3.52 | 2.88 |
E2 | 6.10 | 1.41 | 6.10 | 4.70 | 3.52 | 2.17 |
E3 | 6.20 | 1.41 | 6.20 | 4.70 | 3.52 | 2.17 |
E4 | 6.20 | 1.41 | 6.20 | 4.77 | 3.52 | 2.17 |
Indicators | Alt 1 | Alt 2 | Alt 3 | Alt 4 | Alt 5 |
---|---|---|---|---|---|
A1 | 0.0000 | 0.0788 | 1.0000 | 0.7423 | 0.6635 |
A2 | 0.0000 | 0.0362 | 1.0000 | 0.7123 | 0.4608 |
A3 | 0.0000 | 1.0000 | 0.9307 | 0.6629 | 0.4288 |
A4 | 0.0000 | 1.0000 | 0.8438 | 0.6163 | 0.3888 |
B1 | 0.0000 | 1.0000 | 0.4482 | 0.6010 | 0.5467 |
B2 | 0.0000 | 1.0000 | 0.6046 | 0.6160 | 0.5637 |
B3 | 0.0000 | 1.0000 | 0.5380 | 0.5443 | 0.4641 |
B4 | 0.0000 | 1.0000 | 0.4229 | 0.5191 | 0.1260 |
C1 | 0.0000 | 1.0000 | 0.4931 | 0.4120 | 0.2639 |
C2 | 0.0000 | 1.0000 | 0.5653 | 0.3625 | 0.1151 |
C3 | 0.0000 | 1.0000 | 0.5839 | 0.3571 | 0.1000 |
D1 | 0.0000 | 1.0000 | 0.7176 | 0.6454 | 0.1423 |
D2 | 0.0000 | 1.0000 | 0.6147 | 0.3759 | 0.2556 |
D3 | 0.0000 | 1.0000 | 0.5502 | 0.5037 | 0.0632 |
E1 | 0.0000 | 1.0000 | 0.6943 | 0.4367 | 0.2969 |
E2 | 0.0000 | 1.0000 | 0.7015 | 0.4499 | 0.1620 |
E3 | 0.0000 | 1.0000 | 0.6868 | 0.4405 | 0.1587 |
E4 | 0.0000 | 1.0000 | 0.7015 | 0.4405 | 0.1587 |
Indicators | Alt 1 | Alt 2 | Alt 3 | Alt 4 | Alt 5 |
---|---|---|---|---|---|
A1 | 1.0000 | 0.9212 | 0.0000 | 0.2577 | 0.3365 |
A2 | 1.0000 | 0.9638 | 0.0000 | 0.2877 | 0.5392 |
A3 | 1.0000 | 0.0000 | 0.0693 | 0.3371 | 0.5712 |
A4 | 1.0000 | 0.0000 | 0.1562 | 0.3837 | 0.6112 |
B1 | 1.0000 | 0.0000 | 0.5518 | 0.3990 | 0.4533 |
B2 | 1.0000 | 0.0000 | 0.3954 | 0.3840 | 0.4363 |
B3 | 1.0000 | 0.0000 | 0.4620 | 0.4557 | 0.5359 |
B4 | 1.0000 | 0.0000 | 0.5771 | 0.4809 | 0.8740 |
C1 | 1.0000 | 0.0000 | 0.5069 | 0.5880 | 0.7361 |
C2 | 1.0000 | 0.0000 | 0.4347 | 0.6375 | 0.8849 |
C3 | 1.0000 | 0.0000 | 0.4161 | 0.6429 | 0.9000 |
D1 | 1.0000 | 0.0000 | 0.2824 | 0.3546 | 0.8577 |
D2 | 1.0000 | 0.0000 | 0.3853 | 0.6241 | 0.7444 |
D3 | 1.0000 | 0.0000 | 0.4498 | 0.4963 | 0.9368 |
E1 | 1.0000 | 0.0000 | 0.3057 | 0.5633 | 0.7031 |
E2 | 1.0000 | 0.0000 | 0.2985 | 0.5501 | 0.8380 |
E3 | 1.0000 | 0.0000 | 0.3132 | 0.5595 | 0.8413 |
E4 | 1.0000 | 0.0000 | 0.2985 | 0.5595 | 0.8413 |
Indicators | Alt 1 | Alt 2 | Alt 3 | Alt 4 | Alt 5 |
---|---|---|---|---|---|
A1 | 0.3333 | 0.3518 | 1.0000 | 0.6599 | 0.5977 |
A2 | 0.3333 | 0.3416 | 1.0000 | 0.6347 | 0.4811 |
A3 | 0.3333 | 1.0000 | 0.8783 | 0.5973 | 0.4668 |
A4 | 0.3333 | 1.0000 | 0.7620 | 0.5658 | 0.4500 |
B1 | 0.3333 | 1.0000 | 0.4754 | 0.5562 | 0.5245 |
B2 | 0.3333 | 1.0000 | 0.5584 | 0.5656 | 0.5340 |
B3 | 0.3333 | 1.0000 | 0.5197 | 0.5232 | 0.4827 |
B4 | 0.3333 | 1.0000 | 0.4642 | 0.5097 | 0.3639 |
C1 | 0.3333 | 1.0000 | 0.4966 | 0.4596 | 0.4045 |
C2 | 0.3333 | 1.0000 | 0.5349 | 0.4396 | 0.3610 |
C3 | 0.3333 | 1.0000 | 0.5458 | 0.4375 | 0.3571 |
D1 | 0.3333 | 1.0000 | 0.6391 | 0.5851 | 0.3683 |
D2 | 0.3333 | 1.0000 | 0.5648 | 0.4448 | 0.4018 |
D3 | 0.3333 | 1.0000 | 0.5264 | 0.5019 | 0.3480 |
E1 | 0.3333 | 1.0000 | 0.6206 | 0.4702 | 0.4156 |
E2 | 0.3333 | 1.0000 | 0.6262 | 0.4761 | 0.3737 |
E3 | 0.3333 | 1.0000 | 0.6149 | 0.4719 | 0.3728 |
E4 | 0.3333 | 1.0000 | 0.6261 | 0.4719 | 0.3728 |
Dimensions | Description | Overall Weight | Rank |
---|---|---|---|
Tangibility | Appearance of physical facilities, personnel and written materials | 0.082 | 4 |
Reliability | Reliable and correct performance of the promised service capabilities | 0.402 | 1 |
Responsiveness | Willingness to help customers and provide prompt service | 0.139 | 3 |
Assurance | The ability of employees to inspire trust and confidence in customers | 0.303 | 2 |
Empathy | Give customers individualised treatment | 0.074 | 5 |
Alternatives | Description | Grey Rational Grade (Γ0i) | Rank |
---|---|---|---|
Alt 1 | Appealing facility | 0.3 | 5 |
Alt 2 | Personnel quality and stability | 0.8347 | 1 |
Alt 3 | Response speed to customer need | 0.5727 | 2 |
Alt 4 | Safe transaction environment | 0.4686 | 3 |
Alt 5 | Personalised needs of customers | 0.3838 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-Y.; Lin, C.-L.; Lin, H.-L. Ranking of Service Quality Index and Solutions for Online English Teaching in the Post-COVID-19 Crisis. Mathematics 2023, 11, 4001. https://doi.org/10.3390/math11184001
Ma Y-Y, Lin C-L, Lin H-L. Ranking of Service Quality Index and Solutions for Online English Teaching in the Post-COVID-19 Crisis. Mathematics. 2023; 11(18):4001. https://doi.org/10.3390/math11184001
Chicago/Turabian StyleMa, Yu-Yu, Chia-Liang Lin, and Hung-Lung Lin. 2023. "Ranking of Service Quality Index and Solutions for Online English Teaching in the Post-COVID-19 Crisis" Mathematics 11, no. 18: 4001. https://doi.org/10.3390/math11184001
APA StyleMa, Y. -Y., Lin, C. -L., & Lin, H. -L. (2023). Ranking of Service Quality Index and Solutions for Online English Teaching in the Post-COVID-19 Crisis. Mathematics, 11(18), 4001. https://doi.org/10.3390/math11184001