Mathematical Model to Predict Polyclonal T-Cell-Dependent Antibody Synthesis Responses
Abstract
:1. Introduction
2. Methods
2.1. Process Description
2.2. Development of Mathematical Model
2.3. Detailed Description of the Model Components
2.4. Parameters Determination
3. Results
3.1. Dynamics of the Variables
3.2. Effects of Varying Ag Dose on the Dynamics of Immune Response
3.3. Effects of Varying Initial Value of Tregs on the Dynamics of Immune Response
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hauser, C.; Wilhelm, J.A.; Matter, L.; Schopfer, K. Spontaneous and pokeweed mitogen-induced in vitro IgG production specific for S. aureus cell wall determinants in man. Clin. Exp. Immunol. 1984, 57, 227–233. [Google Scholar] [PubMed]
- Cupps, T.R.; Gerin, J.L.; Purcell, R.H.; Goldsmith, P.K.; Fauci, A.S. In vitro antigen-induced antibody responses to hepatitis B surface antigen in man. Kinetic and cellular requirements. J. Clin. Investig. 1984, 74, 1204–1213. [Google Scholar] [CrossRef]
- Cupps, T.R.; Goldsmith, P.K.; Volkman, D.J.; Gerin, J.L.; Purcell, R.H.; Fauci, A.S. Activation of human peripheral blood B-cells following immunization with hepatitis B surface antigen vaccine. Cell Immunol. 1984, 86, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 2003, 3, 984–993. [Google Scholar] [CrossRef]
- Brownlie, R.J.; Zamoyska, R. T cell receptor signalling networks: Branched, diversified and bounded. Nat. Rev. Immunol. 2013, 13, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Kaiko, G.E.; Horvat, J.C.; Beagley, K.W.; Hansbro, P.M. Immunological decision-making: How does the immune system decide to mount a helper T-cell response? Immunology 2008, 123, 326–338. [Google Scholar] [CrossRef]
- Herzog, S.; Reth, M.; Jumaa, H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat. Rev. Immunol. 2009, 9, 195–205. [Google Scholar] [CrossRef]
- Williams, Z.; Fabian, I. Role of pokeweed mitogen spleen conditioned medium in regulating haematopoiesis in long-term human marrow cultures. Eur.J.Haematol. 1988, 40, 237–244. [Google Scholar] [CrossRef]
- Poch, B.; Lotspeich, E.; Ramadani, M.; Gansauge, S.; Beger, H.G.; Gansauge, F. Systemic immune dysfunction in pancreatic cancer patients. Langenbecks Arch.Surg. 2007, 392, 353–358. [Google Scholar] [CrossRef]
- Shiobara, S.; Witherspoon, R.P.; Lum, L.G.; Storb, R. Immunoglobulin synthesis after HLA-identical marrow grafting. V. The role of peripheral blood monocytes in the regulation of in vitro immunoglobulin secretion stimulated by pokeweed mitogen. J. Immunol. 1984, 132, 2850–2856. [Google Scholar] [CrossRef]
- Boyman, O.; Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 2012, 12, 180–190. [Google Scholar] [CrossRef]
- Hofer, T.; Krichevsky, O.; Altan-Bonnet, G. Competition for IL-2 between Regulatory and Effector T Cells to Chisel Immune Responses. Front. Immunol. 2012, 3, 268. [Google Scholar] [CrossRef] [PubMed]
- Lum, L.G.; Seigneuret, M.C.; Storb, R.F.; Witherspoon, R.P.; Thomas, E.D. In vitro regulation of immunoglobulin synthesis after marrow transplantation. I. T-cell and B-cell deficiencies in patients with and without chronic graft-versus-host disease. Blood 1981, 58, 431–439. [Google Scholar] [CrossRef]
- Lum, L.G.; Seigneuret, M.C.; Witherspoon, R.P.; Thomas, E.D. T and B cell deficiencies in patients with chronic graft-versus-host disease after HLA-identical bone marrow transplantation. Transplant. Proc. 1981, 13, 1231–1232. [Google Scholar] [PubMed]
- Lum, L.G.; Witherspoon, R.P.; Storb, R. The role of T cells and T cell subsets in immune reconstitution after marrow grafting in humans. J. Behring Inst. Mitteilungen 1982, 70, 188–195. [Google Scholar]
- Lum, L.G.; Orcutt-Thordarson, N.; Seigneuret, M.C.; Storb, R. The regulation of Ig synthesis after marrow transplantation: IV. T4 and T8 subset function in patients with chronic graft-versus-host disease. J. Immunol. 1982, 129, 113–119. [Google Scholar] [CrossRef]
- Lum, L.G.; Seigneuret, M.C.; Orcutt-Thordarson, N.; Noges, J.E.; Storb, R. The regulation of immunoglobulin synthesis after HLA-identical bone marrow transplantation: VI. Differential rates of maturation of distinct functional groups within lymphoid subpopulations in patients after human marrow grafting. Blood 1985, 65, 1422–1433. [Google Scholar] [CrossRef]
- Pappas, L.; Adalsteinsson, V.A.; Parikh, A.R. The emerging promise of liquid biopsies in solid tumors. Nat. Cancer 2022, 3, 1420–1422. [Google Scholar] [CrossRef]
- Lum, L.G.; Orcutt-Thordarson, N.; Seigneuret, M.C.; Hansen, J.A. In vitro regulation of immunoglobulin synthesis by T-cell subpopulations defined by a new human T-cell antigen (9.3). Cell Immunol. 1982, 72, 122–129. [Google Scholar] [CrossRef]
- Van der Meide, P.H.; Schellekens, H. Cytokines and the immune response. Biotherapy 1996, 8, 243–249. [Google Scholar] [CrossRef]
- Tomlin, C.J.; Axelrod, J.D. Biology by numbers: Mathematical modelling in developmental biology. Nat. Rev. Genet. 2007, 8, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.S.; Saadatpour, A.; Albert, R. Boolean modeling in systems biology: An overview of methodology and applications. Phys. Biol. 2012, 9, 055001. [Google Scholar] [CrossRef] [PubMed]
- Faniran, T.; Adewole, M.; Ahmad, H.; Abdullah, F.A. Dynamics of tuberculosis in HIV-HCV co-infected cases. Int. J. Biomath. 2023, 16, 2250091. [Google Scholar] [CrossRef]
- Quaranta, V.; Weaver, A.M.; Cummings, P.T.; Anderson, A.R.A. Mathematical modeling of cancer: The future of prognosis and treatment. Clin. Chim. Acta 2005, 357, 173–179. [Google Scholar] [CrossRef]
- Khan, F.; Abbas, M.; Macias-Diaz, J.E.; Khan, M.B.; Alghamdi, S.M. Computational solution of an acid-mediated tumor-growth radial model under logistic growth regimes for normal and cancer cells. Int. J. Biomath. 2023, 16, 2250084. [Google Scholar] [CrossRef]
- Eisenhammer, T.; Hubler, H.; Packard, N.; Kelso, J.A.S. Modeling experimental time series with ordinary differential equations. Biol. Cybern. 1991, 65, 107–112. [Google Scholar] [CrossRef]
- Peng, H.; Zhao, W.; Tan, H.; Ji, Z.; Li, J.; Li, K.; Zhou, X. Prediction of treatment efficacy for prostate cancer using a mathematical model. Sci. Rep. 2016, 6, 21599. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Pereira, F.M.; Ferraz, A.; Silva, F.T.; Goncalves, A.R. Mathematical modeling of controlled-release systems of herbicides using lignins as matrices. A review. Appl. Biochem. Biotechnol. A 2000, 84–86, 595–615. [Google Scholar] [CrossRef]
- Sun, X.; Bao, J.; Nelson, K.C.; Li, K.C.; Kulik, G.; Zhou, X. Systems modeling of anti-apoptotic pathways in prostate cancer: Psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput. Biol. 2013, 9, e1003358. [Google Scholar] [CrossRef]
- Koh, G.; Lee, D.-Y. Mathematical modeling and sensitivity analysis of the integrated TNFα-mediated apoptotic pathway for identifying key regulators. Comput. Biol. Med. 2011, 41, 512–528. [Google Scholar] [CrossRef]
- Shao, H.; Peng, T.; Ji, Z.; Su, J.; Zhou, X. Systematically studying kinase inhibitor induced signaling network signatures by integrating both therapeutic and side effects. PLoS ONE 2013, 8, e80832. [Google Scholar] [CrossRef] [PubMed]
- Chaouiya, C. Petri net modelling of biological networks. Brief. Bioinform. 2007, 8, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Kang, Y.; Bao, J.; Zhang, Y.; Yang, Y.; Zhou, X. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials 2013, 34, 4971–4981. [Google Scholar] [CrossRef] [PubMed]
- Gary, A.; Mi, Q.; Dutta-Moscato, J.; Vodovotz, Y. Agent-based models in translational systems biology. Wiley Interdiscip Rev. Syst. Biol. Med. 2009, 1, 159–171. [Google Scholar]
- Jiang, X.; Wang, J.; Wang, W.; Zhang, H. A Predictor-Corrector Compact Difference Scheme for a Nonlinear Fractional Differential Equation. Fractal Fract. 2023, 7, 521. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Gennemark, P.; Wedelin, D. Efficient algorithms for ordinary differential equation model identification of biological systems. View Affil. 2007, 1, 120–129. [Google Scholar] [CrossRef]
- Resat, H.; Petzold, L.; Pettigrew, M.F. Kinetic Modeling of Biological Systems. Methods Mol Biol. 2009, 541, 311–335. [Google Scholar]
- Dibrov, B.F.; Livshits, M.A.; Volkenstein, M.V. Mathematical model of immune processes. J. Theor. Biol. 1977, 65, 609–631. [Google Scholar] [CrossRef]
- Mayer, H.; Zaenker, K.S.; An Der Heiden, U. A basic mathematical model of the immune response. Chaos 1995, 5, 155–161. [Google Scholar] [CrossRef]
- Yoshida, T.; Hachimura, S.; Kaminogawa, S. The oral administration of low-dose antigen induces activation followed by tolerization, while high-dose antigen induces tolerance without activation. Clin. Immunol. Immunopathol. 1997, 82, 207–215. [Google Scholar] [CrossRef]
- Huang, W.Z.; Hu, W.H.; Wang, Y.; Chen, J.; Hu, Z.Q.; Zhou, J.; Liu, L.; Qiu, W.; Tang, F.Z.; Zhang, S.C.; et al. A Mathematical Modelling of Initiation of Dendritic Cells-Induced T Cell Immune Response. Int. J. Biol. Sci. 2019, 15, 1396–1403. [Google Scholar] [CrossRef]
- Chuang, Y.; Hung, M.E.; Cangelose, B.K.; Leonard, J.N. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun. 2016, 22, 647–657. [Google Scholar] [CrossRef]
- Bains, I.; Antia, R.; Callard, R.; Yates, A.J. Quantifying the development of the peripheral naive CD4+ T-cell pool in humans. Blood 2009, 113, 5480–5487. [Google Scholar] [CrossRef]
- Bidot, C.; Gruy, F.; Haudin, C.S.; El Hentati, F.; Guy, B.; Lambert, C. Mathematical modeling of T-cell activation kinetic. J. Comput. Biol. 2008, 15, 105–128. [Google Scholar] [CrossRef] [PubMed]
- Ludewig, B.; Krebs, P.; Junt, T.; Metters, H.; Ford, N.J.; Anderson, R.M.; Bocharov, G. Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur. J. Immunol. 2004, 34, 2407–2418. [Google Scholar] [CrossRef]
- Rothoeft, T.; Balkow, S.; Krummen, M.; Beissert, S.; Varga, G.; Loser, K.; Oberbanscheidt, P.; van den Boom, F.; Grabbe, S. Structure and duration of contact between dendritic cells and T cells are controlled by T cell activation state. Eur. J. Immunol. 2006, 36, 3105–3117. [Google Scholar] [CrossRef] [PubMed]
- Celli, S.; Day, M.; Muller, A.J.; Molina-Paris, C.; Lythe, G.; Bousso, P. How many dendritic cells are required to initiate a T-cell response? Blood 2012, 120, 3945–3948. [Google Scholar] [CrossRef] [PubMed]
- Kehrl, J.H.; Thevenin, C.; Rieckmann, P.; Fauci, A.S. Transforming growth factor-beta suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J. Immunol. 1991, 146, 4016–4023. [Google Scholar] [CrossRef] [PubMed]
- Vignali Dario, A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Teraguchi, S.; Furusawa, C.; Machiyama, H.; Watanabe, T.M.; Fujita, H.; Sakaguchi, S.; Yanagida, T. Theoretical modeling reveals that regulatory T cells increase T-cell interaction with antigen-presenting cells for stable immune tolerance. Int. Immunol. 2019, 31, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Erwin, S.; Childs, L.M.; Ciupe, S.M. Mathematical model of broadly reactive plasma cell production. Sci. Rep. 2020, 10, 3935. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.; Arulraj, T.; Choulli, T.; Barakat, K.H. A mathematical modelling tool for unravelling the antibody-mediated effects on CTLA-4 interactions. BMC Med. Inform. Decis. Mak. 2018, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Yagi, R.; Suzuki, W.; Seki, N.; Kohyama, M.; Inoue, T.; Arai, T.; Kubo, M. The IL-4 production capability of different strains of naive CD4(+) T cells controls the direction of the T(h) cell response. Int. Immunol. 2002, 14, 1–11. [Google Scholar] [CrossRef]
- Yates, A.; Bergmann, C.; Van Hemmen, J.L.; Stark, J.; Callard, R. Cytokine-modulated regulation of helper T cell populations. J. Theor. Biol. 2000, 206, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Silva-Filho, J.L.; Caruso-Neves, C.; Pinheiro, A.A.S. IL-4: An important cytokine in determining the fate of T cells. Biophys. Rev. 2014, 6, 111–118. [Google Scholar] [CrossRef]
- Junttila, I.S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front. Immunol. 2018, 9, 888. [Google Scholar] [CrossRef]
- Franke, F.; Kirchenbaum, G.A.; Kuerten, S.; Lehmann, P.V. IL-21 in Conjunction with Anti-CD40 and IL-4 Constitutes a Potent Polyclonal B Cell Stimulator for Monitoring Antigen-Specific Memory B Cells. Cells 2020, 9, 433. [Google Scholar] [CrossRef]
- Dienz, O.; Eaton, S.M.; Bond, J.P.; Neveu, W.; Moquin, D.; Noubade, R.; Briso, E.M.; Charland, C.; Leonard, W.J.; Ciliberto, G.; et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 2009, 206, 69–78. [Google Scholar] [CrossRef]
- Lum, L.G.; Burns, E.; Janson, M.M.; Martin, P.J.; Giddings, B.R.; Seigneuret, M.C.; Noges, J.E.; Galoforo, S.C. IgG anti-tetanus toxoid antibody synthesis by human bone marrow: I. Two distinct populations of marrow B cells and functional differences between marrow and peripheral blood B cells. J.Clin. Immunol. 1990, 10, 255–264. [Google Scholar] [CrossRef]
- Lum, L.G.; Culbertson, N.J. The induction and suppression of in vitro IgG anti-tetanus toxoid antibody synthesis by human lymphocytes stimulated with tetanus toxoid in the absence of in vivo booster immunizations. J. Immunol. 1985, 135, 185–191. [Google Scholar] [CrossRef]
- Lichtnekert, J.; Kawakami, T.; Parks, W.C.; Duffield, J.S. Changes in macrophage phenotype as the immune response evolves. Curr. Opin. Pharmacol. 2013, 13, 555–564. [Google Scholar] [CrossRef]
- Netea, M.G.; Dominguez-Andres, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Lum, L.G. Detection of specific antibody synthesis after bone marrow transplantation. Clin. Immunol. Today 1985, 12, 1–3. [Google Scholar]
- Witherspoon, R.P.; Lum, L.G.; Storb, R.; Thomas, E.D. In vitro regulation of immunoglobulin synthesis after human marrow transplantation. II. Deficient T and non-T lymphocyte function within 3-4 months of allogeneic, syngeneic, or autologous marrow grafting for hematologic malignancy. Blood 1982, 59, 844–850. [Google Scholar] [CrossRef]
- Bonin, C.R.B.; Fernandes, G.C.; Dos Santos, R.W.; Lobosco, M. A qualitatively validated mathematical-computational model of the immune response to the yellow fever vaccine. BMC Immunol. 2018, 19, 15. [Google Scholar] [CrossRef]
- Lum, L.G.; Orcutt-Thordarson, N.; Seigneuret, M.C. Regulatory roles of human OKT4/OKT8 subsets in polyclonal immunoglobulin production induced by herpes simplex type 1 virus. Immunobiology 1985, 169, 319–329. [Google Scholar] [CrossRef]
- Bocharov, G.; Volpert, V.; Ludewig, B.; Meyerhans, A. Editorial: Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease. Front. Immunol. 2019, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Enderling, H.; Chaplain, M.A.; Anderson, A.R.; Vaidya, J.S. A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 2007, 246, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Depillis, L.; Gallegos, A.; Radunskaya, A. A model of dendritic cell therapy for melanoma. Front. Oncol. 2013, 3, 56. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.; Smith, N.; Ciupe, S.; Zou, W.; Omenn, G.S.; Pietropaolo, M. Modeling dynamic changes in type 1 diabetes progression: Quantifying beta-cell variation after the appearance of islet-specific autoimmune responses. Math. Biosci. Eng. 2009, 6, 753–778. [Google Scholar] [CrossRef] [PubMed]
- Jaberi-Douraki, M.; Pietropaolo, M.; Khadra, A. Predictive models of type 1 diabetes progression: Understanding T-cell cycles and their implications on autoantibody release. PLoS ONE 2014, 9, e93326. [Google Scholar] [CrossRef]
- Eftimie, R.; Gillard, J.J.; Cantrell, D.A. Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull. Math. Biol. 2016, 78, 2091–2134. [Google Scholar] [CrossRef] [PubMed]
- Siettos, C.I.; Russo, L. Mathematical modeling of infectious disease dynamics. Virulence 2013, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Danon, L. Mathematical modelling of infectious diseases. Br. Med. Bull. 2009, 92, 33–42. [Google Scholar] [CrossRef]
- Overton, C.E.; Stage, H.B.; Ahmad, S.; Curran-Sebastian, J.; Dark, P.; Das, R.; Fearon, E.; Felton, T.; Fyles, M.; Gent, N.; et al. Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example. Infect. Dis. Model. 2020, 5, 409–441. [Google Scholar] [CrossRef]
- McKenna, M.T.; Weis, J.A.; Barnes, S.L.; Tyson, D.R.; Miga, M.I.; Quaranta, V.; Yankeelov, T.E. A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer. Sci. Rep. 2017, 7, 5725. [Google Scholar] [CrossRef]
- Anaya, D.A.; Dogra, P.; Wang, Z.; Haider, M.; Ehab, J.; Jeong, D.K.; Ghayouri, M.; Lauwers, G.Y.; Thomas, K.; Kim, R.; et al. A Mathematical Model to Estimate Chemotherapy Concentration at the Tumor-Site and Predict Therapy Response in Colorectal Cancer Patients with Liver Metastases. Cancers 2021, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Brady, R.; Enderling, H. Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to. Bull. Math. Biol. 2019, 81, 3722–3731. [Google Scholar] [CrossRef]
No | Variables | Values (per mL) |
---|---|---|
1 | Ag (Ag) | 0.5 µg, 1.0 µg and 2.0 µg |
2 | Naive Dendritic cells (DCN) | 16,000 |
3 | Activated Dendritic cells (DCA) | 8000 |
4 | Regulatory Macrophages (M2) | 0 |
5 | Naïve T-cells (Tn) | 520,000 |
6 | B-cells (B) | 20,000 |
7 | Antibody, Ig | 0 |
8 | Plasma cells (PC) | 0 |
9 | Treg cells | (1%, 5%, and 10%) of Th |
10 | T Helper cells (Th) | 150,000 |
11 | Interleukin 2 (IL-2) | 10 ng |
12 | Interleukin 4 (IL-4) | 10 ng |
Parameter (Units) | Description | Mean Value | Min Value | Max Value |
---|---|---|---|---|
(ng/day−1) | Basal production rate of Ag | 1.621 × 10−1 | 1.093 × 10−1 | 1.990 × 10−1 |
(1/cell.day) | Rate of Ag binding with B-cells | 9.03 × 10−7 | 2.18 × 10−7 | 1.69 × 10−6 |
(1/cell.day) | Rate of Ag binding with naïve dendritic cell | 8.27 × 10−7 | 1.06 × 10−7 | 1.61 × 10−6 |
(1/cell.day) | Rate of Ag binding with activated dendritic cells | 8.74 × 10−7 | 2.09 × 10−7 | 1.67 × 10−6 |
(day−1) | Turnover rates of antigen | 2.50 × 10−1 | 1.01 × 10−1 | 4.94 × 10−1 |
(cells/mL.day) | Basal production rate of dendritic cells | 4.54 × 102 | 2.04 × 101 | 1.00 × 103 |
(1/ng.day) | Rate of DC binding with Ags, which leads to their differentiation into activated DC | 2.53 × 10−2 | 4.29 × 10−4 | 5.22 × 10−2 |
(1/ng.day) | Rate of DC binding with Ag, which leads to their differentiation into M2 cells | 1.85 × 10−2 | 3.20 × 10−3 | 3.44 × 10−2 |
(1/day) | Decay rates of DC | 1.77 × 10−1 | 9.49 × 10−2 | 2.98 × 10−1 |
Decay rates of DCA | 3.90 × 10−1 | 2.05 × 10−1 | 5.94 × 10−1 | |
Decay rates of M2 | 3.75 × 10−1 | 3.03 × 10−1 | 4.86 × 10−1 | |
(cells/day) | Basal production rates of naïve T-cells | 9.03 × 100 | 8.11 × 100 | 9.90 × 100 |
Rate of Tn cells differentiating into Th cells | 2.61 × 10−5 | 9.65 × 10−6 | 4.99 × 10−5 | |
Rate of Tn cells differentiating into Treg cells | 2.95 × 10−4 | 5.12 × 10−5 | 4.78 × 10−4 | |
(1/cell.day) | Rate of suppression of Tn cells by M2 | 5.49 × 10−6 | 1.03 × 10−6 | 9.35 × 10−6 |
Turnover rate of Tn cells | 3.27 × 10−2 | 1.07 × 10−2 | 5.56 × 10−2 | |
(cells/day) | Basal rate of production of B-cells | 3.48 × 102 | 3.03 × 102 | 3.91 × 102 |
(1/cell.day) | Rate of proliferation of B-cells by Th cells | 3.25 × 10−7 | 5.55 × 10−7 | 4.42 × 10−7 |
Growth rate of B-cells by IL-6 | 3.81 × 10−4 | 2.83 × 10−4 | 4.63 × 10−4 | |
(1/cell.day) | Rate differentiation of B-cells into B2-cells induced by Th cells | 1.48 × 10−10 | 9.07 × 10−12 | 2.83 × 10−10 |
Degradation rates of B-cells | 2.05 × 10−2 | 1.62 × 10−2 | 2.49 × 10−2 | |
Degradation rates of PC- cells | 1.64 × 10−2 | 4.00 × 10−3 | 2.63 × 10−2 | |
(1/cell.day) | Rate of Th cells differentiation into Treg cells | 1.20 × 10−6 | 6.18 × 10−7 | 2.13 × 10−6 |
Proliferation rate of Th cells by IL2 | 2.70 × 10−1 | 1.10 × 10−1 | 3.47 × 10−1 | |
Turnover rate of Th cells | 1.39 × 10−1 | 3.86 × 10−2 | 2.96 × 10−1 | |
Proliferation rate of Treg by IL2 | 1.19 × 10−4 | 8.76 × 10−5 | 1.57 × 10−4 | |
Turnover rates of Treg cells | 2.13 × 10−1 | 9.95 × 10−2 | 2.94 × 10−1 | |
(ng/cell.day) | Expansion rates of IL-2 by Th cells | 8.67 × 10−1 | 1.21 × 10−1 | 1.59 × 100 |
(ng/cell.day) | Expansion rates of IL-2 by activated Th cells | 1.01 × 100 | 2.42 × 10−1 | 1.46 × 100 |
(1/cell.day) | Rate of consumption of IL-2 by Th cells | 2.80 × 10−2 | 6.75 × 10−3 | 5.98 × 10−2 |
(1/cell.day) | Rate of consumption of IL-2 by Treg cells | 2.35 × 10−2 | 1.39 × 10−3 | 4.98 × 10−2 |
Rate of degradation of IL-2 | 3.12 × 10−2 | 1.05 × 10−2 | 5.00 × 10−2 | |
(1/cell.day) | Rate of consumption of IL-6 by B-cells | 8.18 × 10−2 | 4.35 × 10−3 | 1.54 × 10−1 |
Rate of degradation of IL-6 | 2.79 × 10−2 | 1.13 × 10−2 | 4.94 × 10−2 | |
(µg/cell.day) | Rate of production of Ig by plasma cells | 3.44 × 10−1 | 1.77 × 10−1 | 4.85 × 10−1 |
Turnover rate of Ig | 2.61 × 10−2 | 2.32 × 10−2 | 2.95 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, J.S.; Thakur, A.; Lum, L.G. Mathematical Model to Predict Polyclonal T-Cell-Dependent Antibody Synthesis Responses. Mathematics 2023, 11, 4017. https://doi.org/10.3390/math11184017
Thakur JS, Thakur A, Lum LG. Mathematical Model to Predict Polyclonal T-Cell-Dependent Antibody Synthesis Responses. Mathematics. 2023; 11(18):4017. https://doi.org/10.3390/math11184017
Chicago/Turabian StyleThakur, Jagdish S., Archana Thakur, and Lawrence G. Lum. 2023. "Mathematical Model to Predict Polyclonal T-Cell-Dependent Antibody Synthesis Responses" Mathematics 11, no. 18: 4017. https://doi.org/10.3390/math11184017
APA StyleThakur, J. S., Thakur, A., & Lum, L. G. (2023). Mathematical Model to Predict Polyclonal T-Cell-Dependent Antibody Synthesis Responses. Mathematics, 11(18), 4017. https://doi.org/10.3390/math11184017