Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator
Abstract
:1. Introduction
- 1.
- =;
- 2.
- =.
2. Results Related to the Third-Order Subordination
- whenever
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- Miller, S.S.; Mocanu, P.T.; Reade, M.O. Starlike integral operators. Pac. J. Math. 1978, 79, 157–168. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. Theory Appl. 2003, 48, 815–826. [Google Scholar]
- Antonino, J.A.; Miller, S.S. Third-order differential inequalities and subordinations in the complex plane. Complex Var. Appl. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Li, S.; Ma, L. Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator. Abstr. Appl. Anal. 2014, 2014, 792175. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Ahmad, M.Z.; Al-Janaby, H.F. Third-order differential subordination and superordination involving a fractional operator. Open Math. 2015, 13, 706–728. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. A unified class of analytic functions involving a generalization of the Srivastava-Attiya operator. Appl. Math. Comput. 2015, 251, 35–45. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S. Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Shaqsi, K.; Darus, M.; Al-Janaby, H.F. Subordination properties of meromorphic Kummer function correlated with Hurwitz-Lerch zeta-function. Mathematics 2020, 9, 192. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. A certain subclass of univalent meromorphic functions defined by a linear operator associated with Hurwitz-Lerch zeta-function Rad Hrvatske akademije znanosti I umjetnosti. Mat. Znan. 2019, 538, 71–83. [Google Scholar]
- Al-Janaby, H.F.; Ghanim, F.; Darus, M. Third-order Complex differential Inequalities of ξ-Generalized Hurwitz-Lerch zeta-function. Mathematics 2021, 8, 845. [Google Scholar] [CrossRef]
- Lupa, A.A.; Oros, G.I. Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Morais, J.; Zayed, H.M. Applications of differential subordination and superordination theorems to fluid mechanics involving a fractional higher-order integral operator. Alex. Eng. J. 2021, 60, 3901–3914. [Google Scholar] [CrossRef]
- Attiya, A.A.; Aouf, M.K.; Ali, E.E.; Yassen, M.F. Differential Subordination and Superordination Results Associated with Mittag–Leffler Function. Mathematics 2021, 9, 226. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Al-Momani, M.; Bathiha, B. Geometric studies on Mittag-Leffler Type function involving a new integrodifferential operator. Mathematics 2022, 10, 3243. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems l. Kaungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Mahmood, Z.H.; Jassim, K.A.; Shihab, B.N. Differential Subordination and Superordination for Multivalent Functions Associated with Generalized Fox-Wright Functions. Iraqi J. Sci. 2022, 63, 675–682. [Google Scholar] [CrossRef]
- Mihsin, B.K.; Atshan, W.G.; Alhily, S.S. On New Sandwich Results of Univalent Functions Defined by a Linear Operator. Iraqi J. Sci. 2022, 63, 5467–5475. [Google Scholar] [CrossRef]
- Hadia, S.H.; Darus, M. Differential subordination and superordination for a q-derivative operator connectedwith the q-exponential function. Int. J. Nonlinear Anal. Appl. 2022, 13, 2795–2806. [Google Scholar]
- Huu, C.N.; Omid, N.; Navaz, R.M.; Gasimov, Y.S. Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 2020, 24, 49–58. [Google Scholar]
- Baleanu, D.; Wu, G.C.; Zeng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos, Solit. Fractals 2017, 102, 99–105. [Google Scholar] [CrossRef]
- Long, L.D. Cauchy problem for inhomogeneous fractional nonclassical diffusion equation on the sphere. J. Math. Comput. Sci. 2021, 25, 303–311. [Google Scholar] [CrossRef]
- Abdullah, T.Q.S.; Xiao, H.; Al-Sadi, W. Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with φp-Laplacian operator. J. Math. Comput. Sci. 2022, 27, 184–195. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef]
- Mishra, A.K.; Gochhayat, P. Differential sandwich theorems for functions of associated with a generalized the Srivastava-Attiya operator. Pan Amer. Math. J. 2013, 23, 25–43. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulnabi, F.F.; Al-Janaby, H.F.; Ghanim, F.; Alb Lupaș, A. Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator. Mathematics 2023, 11, 4021. https://doi.org/10.3390/math11184021
Abdulnabi FF, Al-Janaby HF, Ghanim F, Alb Lupaș A. Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator. Mathematics. 2023; 11(18):4021. https://doi.org/10.3390/math11184021
Chicago/Turabian StyleAbdulnabi, Faten Fakher, Hiba F. Al-Janaby, Firas Ghanim, and Alina Alb Lupaș. 2023. "Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator" Mathematics 11, no. 18: 4021. https://doi.org/10.3390/math11184021
APA StyleAbdulnabi, F. F., Al-Janaby, H. F., Ghanim, F., & Alb Lupaș, A. (2023). Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator. Mathematics, 11(18), 4021. https://doi.org/10.3390/math11184021