The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions
Abstract
:1. Introduction
- It is irreversible, i.e., it does not have symmetry with respect to the change of the sign of time and the simultaneous reversal or shift of variables.
- It is strongly dissipative, i.e., it is impossible to eliminate dissipation in it by removing some parameter, and it is impossible to reduce it to a conservative system.
- It is high-dimensional (six-dimensional). Namely, it has the largest dimension compared to other previously discovered systems with mixed dynamics. This fact complicates the search for the intersection points of a chaotic attractor and a chaotic repeller.
2. Materials and Methods
3. Results
3.1. Phase Space
3.2. The Kantorovich–Rubinstein–Wasserstein Distance
3.3. The Euclidian Distance
3.4. The Fractal Dimensions
3.5. The Sum of the Lyapunov Exponents
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics; Araki, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 420–422. [Google Scholar]
- Kuramoto, Y. Chemical Oscillations, Waves and Turbulence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Maslennikov, O.V.; Nekorkin, V.I. Adaptive dynamical networks. Uspekhi Fiz. Nauk (UFN) 2017, 60, 694–704. [Google Scholar] [CrossRef]
- Berner, R.; Gross, T.; Kuehn, C.; Kurths, J.; Yanchuk, S. Adaptive dynamical networks. Phys. Rep. 2023, 1031, 1–59. [Google Scholar] [CrossRef]
- Lücken, L.; Popovych, O.V.; Tass, P.A.; Yanchuk, S. Noise-enhanced coupling between two oscillators with long-term plasticity. Phys. Rev. E 2016, 93, 032210. [Google Scholar] [CrossRef]
- Kuehn, C. Multiscale dynamics of an adaptive catalytic network. Math. Model. Nat. Phenom. 2019, 14, 402. [Google Scholar] [CrossRef]
- Sawicki, J.; Berner, R.; Löser, T.; Schöll, E. Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. Front. Netw. Physiol. 2022, 1, 730385. [Google Scholar] [CrossRef]
- Horstmeyer, L.; Kuehn, C. Adaptive voter model on simplicial complexes. Phys. Rev. E 2020, 101, 022305. [Google Scholar] [CrossRef]
- Berner, R.; Yanchuk, S.; Schöll, E. What adaptive neuronal networks teach us about power grids. Phys. Rev. E 2021, 103, 042315. [Google Scholar] [CrossRef]
- Boccaletti, S.; Lellis, P.D.; del Genio, C.; Alfaro-Bittner, K.; Criado, R.; Jalan, S.; Romance, M. The structure and dynamics of networks with higher order interactions. Phys. Rep. 2023, 1018, 1–64. [Google Scholar] [CrossRef]
- Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P.; Vaccarino, F. Homological Scaffolds of brain functional networks. J. R. Soc. Interface 2014, 11, 20140873. [Google Scholar] [CrossRef]
- Lord, L.D.; Expert, P.; Fernandes, H.; Petri, G.; Hartevelt, T.V.; Vaccarino, F.; Deco, G.; Turkheimer, F.; Kringelbach, M. Insights into brain architectures from the homological Scaffolds of functional connectivity networks. Front. Syst. Neurosci. 2016, 10, 85. [Google Scholar] [CrossRef]
- Lee, H.; Kang, H.; Chung, M.; Kim, B.N.; Lee, D. Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 2012, 31, 2267–2277. [Google Scholar] [CrossRef]
- Sizemore, A.; Giusti, C.; Kahn, A.; Vettel, J.; Betzel, R.; Bassett, D. Cliques and cavities in the human connectome. J. Comp. Neurosci. 2018, 44, 115–145. [Google Scholar] [CrossRef]
- Estrada, E.; Ross, G. Centralities in simplicial complexes. Applications to protein interaction networks. J. Theoret. Biol. 2018, 438, 46–60. [Google Scholar] [CrossRef]
- Sizemore, A.; Karuza, E.; Giusti, C.; Bassett, D. Knowledge gaps in the early growth of semantic networks. arXiv 2017. [Google Scholar] [CrossRef]
- Patania, A.; Petri, G.; Vaccarino, F. The shape of collaborations. EPJ Data Sci. 2017, 6, 18. [Google Scholar] [CrossRef]
- Delshams, A.; Gonchenko, S.V.; Gonchenko, V.S.; Lázaro, J.T.; Stenkin, O. Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps. Nonlinearity 2012, 26, 1–33. [Google Scholar] [CrossRef]
- Gonchenko, S.V.; Turaev, D.V.; Shil’nikov, L.P. On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour. Proc. Steklov Inst. Math. Russ. Acad. Sci. 1997, 216, 76–125. [Google Scholar]
- Gonchenko, S.V.; Turaev, D.V. On three types of dynamics and the notion of attractor. Proc. Steklov Inst. Math. Russ. Acad. Sci. 2017, 297, 116–137. [Google Scholar] [CrossRef]
- Topaj, D.; Pikovsky, A. Reversibility vs. synchronization in oscillator lattices. Phys. D Nonlinear Phenom. 2002, 170, 118–130. [Google Scholar] [CrossRef]
- Kazakov, A.O. Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane. Regul. Chaotic Dyn. 2013, 18, 508–520. [Google Scholar] [CrossRef]
- Gonchenko, A.S.; Gonchenko, S.V.; Kazakov, A.O. Richness of chaotic dynamics in nonholonomic models of a Celtic stone. Regul. Chaotic Dyn. 2013, 18, 521–538. [Google Scholar] [CrossRef]
- Bizyaev, I.A.; Borisov, A.V.; Kazakov, A.O. Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors. Regul. Chaotic Dyn. 2015, 20, 605–626. [Google Scholar] [CrossRef]
- Kuznetsov, S.P. Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint. Europhys. Lett. 2017, 118, 10007. [Google Scholar] [CrossRef]
- Gonchenko, A.S.; Gonchenko, S.V.; Kazakov, A.O.; Turaev, D.V. On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators. Phys. D Nonlinear Phenom. 2017, 350, 45–57. [Google Scholar] [CrossRef]
- Ariel, G.; Schiff, J. Conservative, dissipative and super-diffusive behavior of a particle propelled in a regular flow. Phys. D Nonlinear Phenom. 2020, 411, 132584. [Google Scholar] [CrossRef]
- Kazakov, A.O. Merger of a Hénon-like attractor with a Hénon-like repeller in a model of vortex dynamics. Chaos 2020, 30, 011105. [Google Scholar] [CrossRef]
- Kazakov, A.O. On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems. Radiophys. Quantum Electron. 2019, 61, 650–658. [Google Scholar] [CrossRef]
- Gonchenko, S.V.; Gonchenko, M.S.; Sinitsky, I.O. On the mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric heteroclinic contours (Russian). Izv. Ross. Akad. Nauk. Seriya Mat. 2020, 84, 23–51. [Google Scholar] [CrossRef]
- Turaev, D. A criterion for mixed dynamics in two-dimensional reversible maps. Chaos 2021, 31, 043133. [Google Scholar] [CrossRef]
- Emelianova, A.A.; Nekorkin, V.I. On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators. Chaos 2019, 29, 111102. [Google Scholar] [CrossRef]
- Emelianova, A.A.; Nekorkin, V.I. The third type of chaos in a system of two adaptively coupled phase oscillators. Chaos 2020, 30, 051105. [Google Scholar] [CrossRef] [PubMed]
- Emelianova, A.A.; Nekorkin, V.I. Emergence and synchronization of a reversible core in a system of forced adaptively coupled Kuramoto oscillators. Chaos 2021, 31, 033102. [Google Scholar] [CrossRef] [PubMed]
- Emelianova, A.A.; Nekorkin, V.I. The influence of nonisochronism on mixed dynamics in a system of two adaptively coupled rotators. Chaos Solitons Fractals 2023, 169, 113271. [Google Scholar] [CrossRef]
- Shchapin, D.S.; Emelianova, A.A.; Nekorkin, V.I. A chaotic oscillation generator based on mixed dynamics of adaptively coupled Kuramoto oscillators. Chaos Solitons Fractals 2023, 166, 112989. [Google Scholar] [CrossRef]
- Aoki, T.; Aoyagi, T. Co-evolution of phases and connection strengths in a network of phase oscillators. Phys. Rev. Lett. 2009, 102. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Aoyagi, T. Self-organized network of phase oscillators coupled by activity-dependent interactions. Phys. Rev. E 2011, 84. [Google Scholar] [CrossRef] [PubMed]
- Bačić, I.; Yanchuk, S.; Wolfrum, M.; Franović, I. Noise-induced switching in two adaptively coupled excitable systems. Eur. Phys. J. Spec. Top. 2018, 227, 1077–1090. [Google Scholar] [CrossRef]
- Kasatkin, D.V.; Nekorkin, V.I. Dynamics of the phase oscillators with plastic couplings. Izv. Vuzov. Radiofizika. 2015, 58, 981–997. [Google Scholar] [CrossRef]
- Kachhvah, A.D.; Jalan, S. Hebbian plasticity rules abrupt desynchronization in pure simplicial complexes. New J. Phys. 2022, 24, 052002. [Google Scholar] [CrossRef]
- Kuznetsov, S.P. Hyperbolic Chaos: A Physicist’s View; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Chigarev, V.; Kazakov, A.; Pikovsky, A. Kantorovich–Rubinstein–Wasserstein distance between overlapping attractor and repeller. Chaos 2020, 30, 073114. [Google Scholar] [CrossRef]
- Doran, G. PyEMD: Earth Mover’s Distance for Python. 2014. Available online: https://github.com/garydoranjr/pyemd (accessed on 2 July 2019).
- Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.M. Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 1980, 15, 9–20. [Google Scholar] [CrossRef]
- Grines, E.A.; Kazakov, A.; Sataev, I.R. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Chaos 2022, 32, 093105. [Google Scholar] [CrossRef] [PubMed]
- Stankevich, N.V.; Shchegoleva, N.A.; Sataev, I.R.; Kuznetsov, A.P. Three dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators. J. Comput. Nonlinear Dyn. 2020, 15, 111001. [Google Scholar] [CrossRef]
Three Adaptively Coupled Phase Oscillators with Higher-Order Interactions | Two Adaptively Coupled Phase Oscillators with Frequency Detuning [32,33] | Two Non-Autonomous Adaptively Coupled Phase Oscillators [34] | Two Non-Isochronous Adaptively Coupled Phase Oscillators [35] | A Model of Vortex Dynamics [28] | A Perturbed Anosov Cat Map [43] | |
---|---|---|---|---|---|---|
Reversibility | irreversible | irreversible | irreversible | irreversible | reversible | reversible |
Weakly/ strongly dissipative | strongly | strongly | strongly | strongly | strongly | weakly |
dimension | 6 | 3 | 4 | 4 | 3 | 2 |
min distance | ∼ | ∼ | ∼ | ∼ | — | — |
min | 0.15 | 0.45 | 0.2 | 0.1 | — | 0 |
min | ∼ | ∼ | — | ∼ | — | — |
1.03 | 1.5–2 | 1.8–2 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emelianova, A.A.; Nekorkin, V.I. The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions. Mathematics 2023, 11, 4024. https://doi.org/10.3390/math11194024
Emelianova AA, Nekorkin VI. The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions. Mathematics. 2023; 11(19):4024. https://doi.org/10.3390/math11194024
Chicago/Turabian StyleEmelianova, Anastasiia A., and Vladimir I. Nekorkin. 2023. "The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions" Mathematics 11, no. 19: 4024. https://doi.org/10.3390/math11194024
APA StyleEmelianova, A. A., & Nekorkin, V. I. (2023). The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions. Mathematics, 11(19), 4024. https://doi.org/10.3390/math11194024