Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations
Abstract
:1. Introduction
2. Preliminary Information for Reduced ODE
3. Explanation of the GERFM
- Step 2: m can be found in the concept of the balancing principle;
- Step 4: Equating the coefficients of A to zero, a set of algebraic expressions in and is reached;
- Step 5: We obtain the solutions to Equation (3) by evaluating the obtained expressions.
4. Applications of the GERFM
4.1. Applications to the Ostrovsky Equation
4.2. Applications to the SRLW Equation
5. Review on Stability Analysis and Graphical Representations of the Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Wang, Z.; Song, K. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng. Comput. 2022, 38, 2469–2485. [Google Scholar] [CrossRef]
- Abdollahi, Z.; Moghadam, M.M.; Saeedi, H.; Ebadi, M.J. A computational approach for solving fractional Volterra integral equations based on two-dimensional Haar wavelet method. Int. J. Comput. Math. 2022, 99, 1488–1504. [Google Scholar] [CrossRef]
- Alipour, P. The BEM and DRBEM schemes for the numerical solution of the two-dimensional time-fractional diffusion-wave equations. arXiv 2023, arXiv:2305.12117v1. [Google Scholar]
- Chen, L.; Yang, H.; Song, K.; Huang, W.; Ren, X.; Xu, H. Failure mechanisms and characteristics of the Zhongbao landslide at Liujing Village, Wulong, China. Landslides 2021, 18, 1445–1457. [Google Scholar] [CrossRef]
- Yang, H.Q.; Xing, S.G.; Wang, Q.; Li, Z. Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides. Eng. Geol. 2018, 239, 119–125. [Google Scholar] [CrossRef]
- Ozkan, E.M. A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex form. Nonlinear Dyn. 2023, 111, 18419–18437. [Google Scholar]
- Yel, G.; Bulut, H.; İlhan, E. A new analytical method to the conformable chiral nonlinear Schrödinger equation in the quantum Hall effect. Pramana J. Phys. 2022, 96, 54. [Google Scholar] [CrossRef]
- Fadhal, E.; Akbulut, A.; Kaplan, M.; Awadalla, M.; Abuasbeh, K. Extraction of Exact Solutions of Higher Order Sasa-Satsuma Equation in the Sense of Beta Derivative. Symmetry 2022, 14, 2390. [Google Scholar] [CrossRef]
- Abuasad, S.; Hashim, I. Homotopy Decomposition Method for Solving Higher-Order Time Fractional Diffusion Equation via Modified Beta Derivative. Sains Malays. 2018, 47, 2899–2905. [Google Scholar] [CrossRef]
- Ahmad, H.; Alam, M.N.; Rahim, M.A.; Alotaibi, M.F.; Omri, M. The unified technique for the nonlinear time-fractional model with the beta-derivative. Results Phys. 2021, 29, 104785. [Google Scholar] [CrossRef]
- Zafar, A.; Ali, K.K.; Raheel, M.; Jafar, N.; Nisar, K.S. Soliton solutions to the DNA Peyrard-Bishop equation with beta-derivative via three distinctive approaches. Eur. Phys. J. Plus 2020, 135, 726. [Google Scholar] [CrossRef]
- Arshed, S.; Raza, N.; Butt, A.R.; Akgul, A. Exact solutions for Kraenkel-Manna-Merle model in saturated ferromagnetic materials using β-derivative. Phys. Scr. 2021, 96, 124018. [Google Scholar] [CrossRef]
- Zhang, L.H.; Si, J.G. New soliton and periodic solutions of (1 + 2)-dimensional nonlinear Schrödinger equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2747–2754. [Google Scholar] [CrossRef]
- Akbulut, A.; Islam, S.M.R. Study on the Biswas-Arshed Equation with the Beta Time Derivative. Int. J. Appl. Comput. Math. 2022, 8, 167. [Google Scholar] [CrossRef]
- Ismael, H.F.; Bulut, H.; Baskonus, H.M.; Gao, W. Dynamical behaviors to the coupled Schrodinger-Boussinesq system with the beta derivative. AIMS Math. 2021, 6, 7909–7928. [Google Scholar] [CrossRef]
- Gurefe, Y.; Sonmezoglu, A.; Misirli, E. Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics. Pramana J. Phys. 2011, 77, 1023–1029. [Google Scholar] [CrossRef]
- Martínez, H.Y.; Gómez-Aguilar, J.F.; Baleanu, D. Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 2018, 155, 357–365. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M.; Ilie, M.; Gómez-Aguilar, J.F. Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions. Optik 2020, 217, 164801. [Google Scholar] [CrossRef]
- Kazmi, S.S.; Jhangeer, A.; Raza, N.; Alrebdi, H.I.; Abdel-Aty, A.H.; Eleuch, H. The Analysis of Bifurcation, Quasi-Periodic and Solitons Patterns to the New Form of the Generalized q-Deformed Sinh-Gordon Equation. Symmetry 2023, 15, 1324. [Google Scholar] [CrossRef]
- Akar, M.; Ozkan, E.M. On exact solutions of the (2 + 1)-dimensional time conformable Maccari system. Int. J. Mod. Phys. B 2023, 37, 2350219. [Google Scholar] [CrossRef]
- Ouahid, L.; Abdou, M.A.; Owyed, S.; Inc, M.; Abdel-Baset, A.M.; Yusuf, A. New optical solitons for complex Ginzburg-Landau equation with beta derivatives via two integration algorithms. Indian J. Phys. 2022, 96, 2093–2105. [Google Scholar] [CrossRef]
- Islam, M.N.; Asaduzzaman, M.; Ali, M.S. Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics. AIMS Math. 2020, 5, 26–41. [Google Scholar] [CrossRef]
- Yalcinkaya, I.; Ahmad, H.; Tasbozan, O.; Kurt, A. Soliton solutions for time fractional ocean engineering models with Beta derivative. J. Ocean. Eng. Sci. 2022, 7, 444–448. [Google Scholar] [CrossRef]
- Ebaid, A.; Aly, E.H. Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion 2012, 49, 296–308. [Google Scholar] [CrossRef]
- Kaplan, M.; Butt, A.R.; Thabet, H.; Akbulut, A.; Raza, N.; Kumar, D. An effective computational approach and sensitivity analysis to pseudo-parabolic-type equations. Waves Random Complex Media 2021. [Google Scholar] [CrossRef]
- Ghanbari, B.; Inc, M.; Yusuf, A.; Bayram, M. Exact optical solitons of Radhakrishnan-Kundu-Lakshmanan equation with Kerr law nonlinearity. Mod. Phys. Lett. B 2019, 33, 1950061. [Google Scholar] [CrossRef]
- Yue, C.; Khater, M.M.A.; Attia, R.A.M.; Lu, D. The plethora of explicit solutions of the fractional KS equation through liquid–gas bubbles mix under the thermodynamic conditions via Atangana–Baleanu derivative operator. Adv. Differ. Equ. 2020, 2020, 62. [Google Scholar] [CrossRef]
- Sedawy, A.R.; Lu, D.; Yue, C. Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability. J. Taibah Univ. Sci. 2017, 11, 623–633. [Google Scholar] [CrossRef]
- Kopc̨asız, B.; Yasar, E. The investigation of unique optical soliton solutions for dual-mode nonlinear Schrodinger’s equation with new mechanisms. J. Opt. 2023, 52, 1513–1527. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, M.; Alqahtani, R.T.; Alharthi, N.H. Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations. Mathematics 2023, 11, 4030. https://doi.org/10.3390/math11194030
Kaplan M, Alqahtani RT, Alharthi NH. Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations. Mathematics. 2023; 11(19):4030. https://doi.org/10.3390/math11194030
Chicago/Turabian StyleKaplan, Melike, Rubayyi T. Alqahtani, and Nadiyah Hussain Alharthi. 2023. "Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations" Mathematics 11, no. 19: 4030. https://doi.org/10.3390/math11194030
APA StyleKaplan, M., Alqahtani, R. T., & Alharthi, N. H. (2023). Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations. Mathematics, 11(19), 4030. https://doi.org/10.3390/math11194030